Jailbreaking is (Mostly) Simpler Than You Think
- URL: http://arxiv.org/abs/2503.05264v1
- Date: Fri, 07 Mar 2025 09:28:19 GMT
- Title: Jailbreaking is (Mostly) Simpler Than You Think
- Authors: Mark Russinovich, Ahmed Salem,
- Abstract summary: We introduce the Context Compliance Attack (CCA), a novel, optimization-free method for bypassing AI safety mechanisms.<n>CCA exploits a fundamental architectural vulnerability inherent in many deployed AI systems.
- Score: 2.7174461714624805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Context Compliance Attack (CCA), a novel, optimization-free method for bypassing AI safety mechanisms. Unlike current approaches -- which rely on complex prompt engineering and computationally intensive optimization -- CCA exploits a fundamental architectural vulnerability inherent in many deployed AI systems. By subtly manipulating conversation history, CCA convinces the model to comply with a fabricated dialogue context, thereby triggering restricted behavior. Our evaluation across a diverse set of open-source and proprietary models demonstrates that this simple attack can circumvent state-of-the-art safety protocols. We discuss the implications of these findings and propose practical mitigation strategies to fortify AI systems against such elementary yet effective adversarial tactics.
Related papers
- Temporal Context Awareness: A Defense Framework Against Multi-turn Manipulation Attacks on Large Language Models [0.0]
Large Language Models (LLMs) are increasingly vulnerable to sophisticated multi-turn manipulation attacks.
This paper introduces the Temporal Context Awareness framework, a novel defense mechanism designed to address this challenge.
Preliminary evaluations on simulated adversarial scenarios demonstrate the framework's potential to identify subtle manipulation patterns.
arXiv Detail & Related papers (2025-03-18T22:30:17Z) - OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities [0.0]
We demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations.<n>We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement.<n>We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats.
arXiv Detail & Related papers (2025-02-18T19:33:14Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - How vulnerable is my policy? Adversarial attacks on modern behavior cloning policies [22.52780232632902]
This paper presents a comprehensive study of adversarial attacks on Learning from Demonstration (LfD) algorithms.<n>We study the vulnerability of these methods to untargeted, targeted and universal adversarial perturbations.<n>Our experiments on several simulated robotic manipulation tasks reveal that most of the current methods are highly vulnerable to adversarial perturbations.
arXiv Detail & Related papers (2025-02-06T01:17:39Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.<n>PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.<n>To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Fundamental Risks in the Current Deployment of General-Purpose AI Models: What Have We (Not) Learnt From Cybersecurity? [60.629883024152576]
Large Language Models (LLMs) have seen rapid deployment in a wide range of use cases.
OpenAIs Altera are just a few examples of increased autonomy, data access, and execution capabilities.
These methods come with a range of cybersecurity challenges.
arXiv Detail & Related papers (2024-12-19T14:44:41Z) - SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
We discuss different software and hardware attacks applicable to compound AI systems.
We show how combining multiple attack mechanisms can reduce the threat model assumptions required for an isolated attack.
arXiv Detail & Related papers (2024-11-20T17:08:38Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts [80.0638227807621]
generative artificial intelligence (GAI) models have demonstrated superiority over conventional AI methods.
MoE, which uses multiple expert models for prediction through a gate mechanism, proposes possible solutions.
arXiv Detail & Related papers (2024-05-07T11:13:17Z) - Coordinated Flaw Disclosure for AI: Beyond Security Vulnerabilities [1.3225694028747144]
We propose a Coordinated Flaw Disclosure framework tailored to the complexities of machine learning (ML) issues.
Our framework introduces innovations such as extended model cards, dynamic scope expansion, an independent adjudication panel, and an automated verification process.
We argue that CFD could significantly enhance public trust in AI systems.
arXiv Detail & Related papers (2024-02-10T20:39:04Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Vulnerabilities of Connectionist AI Applications: Evaluation and Defence [0.0]
This article deals with the IT security of connectionist artificial intelligence (AI) applications, focusing on threats to integrity.
A comprehensive list of threats and possible mitigations is presented by reviewing the state-of-the-art literature.
The discussion of mitigations is likewise not restricted to the level of the AI system itself but rather advocates viewing AI systems in the context of their supply chains.
arXiv Detail & Related papers (2020-03-18T12:33:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.