論文の概要: Fine-Grained Evaluation for Implicit Discourse Relation Recognition
- arxiv url: http://arxiv.org/abs/2503.05326v1
- Date: Fri, 07 Mar 2025 11:10:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:22:18.344335
- Title: Fine-Grained Evaluation for Implicit Discourse Relation Recognition
- Title(参考訳): インシシットな談話関係認識のための微粒化評価
- Authors: Xinyi Cai,
- Abstract要約: 暗黙の談話関係認識は、テキストのスパン間の明示的な談話接続が欠如しているため、難しい課題である。
近年の事前学習型言語モデルは,この課題において大きな成功を収めている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Implicit discourse relation recognition is a challenging task in discourse analysis due to the absence of explicit discourse connectives between spans of text. Recent pre-trained language models have achieved great success on this task. However, there is no fine-grained analysis of the performance of these pre-trained language models for this task. Therefore, the difficulty and possible directions of this task is unclear. In this paper, we deeply analyze the model prediction, attempting to find out the difficulty for the pre-trained language models and the possible directions of this task. In addition to having an in-depth analysis for this task by using pre-trained language models, we semi-manually annotate data to add relatively high-quality data for the relations with few annotated examples in PDTB 3.0. The annotated data significantly help improve implicit discourse relation recognition for level-2 senses.
- Abstract(参考訳): 暗黙の談話関係認識は、テキスト間の明示的な談話接続が欠如しているため、談話分析において難しい課題である。
近年の事前学習型言語モデルは,この課題において大きな成功を収めている。
しかし,これらの学習済み言語モデルの性能について,詳細な分析は行われていない。
したがって、この課題の難易度や方向性は不明確である。
本稿では,事前学習した言語モデルの難易度と課題の方向性を明らかにするために,モデル予測を深く分析する。
事前学習した言語モデルを用いて,このタスクの詳細な分析を行うのに加えて,PDTB 3.0 の注釈付き例がほとんどない関係に対して,比較的高品質なデータを追加するために,半手動でアノテートする。
注釈付きデータは、レベル2感覚に対する暗黙の談話関係認識を著しく改善する。
関連論文リスト
- ImpScore: A Learnable Metric For Quantifying The Implicitness Level of Sentence [40.4052848203136]
インプシット言語は, 自然言語処理システムにおいて, 正確なテキスト理解を実現し, ユーザとの自然な対話を促進するために不可欠である。
本稿では,外部参照に頼ることなく,言語の暗黙度を定量化するスカラー計量を開発した。
InmpScoreのユーザによる評価を,アウト・オブ・ディストリビューションデータに基づく人間による評価と比較することで検証する。
論文 参考訳(メタデータ) (2024-11-07T20:23:29Z) - Making Retrieval-Augmented Language Models Robust to Irrelevant Context [55.564789967211844]
ALMの重要なデシプラタムは、検索された情報が関連する場合のパフォーマンスをモデル化するのに役立つことである。
近年の研究では、検索の増大がパフォーマンスに悪影響を及ぼすことが示されている。
論文 参考訳(メタデータ) (2023-10-02T18:52:35Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
本稿では,大規模なプロンプトベース言語モデルであるコーデックスの対角的ロバスト性に関する最初の実証的研究について述べる。
この結果から, 最先端の言語モデル(SOTA)は, 慎重に構築された敵の例に対して脆弱であることが示された。
論文 参考訳(メタデータ) (2023-01-30T13:21:00Z) - Pre-trained Sentence Embeddings for Implicit Discourse Relation
Classification [26.973476248983477]
暗黙の談話関係は、より小さな言語単位を一貫性のあるテキストに結合する。
本稿では,暗黙的対話関係感覚分類のためのニューラルネットワークにおけるベース表現として,事前学習文の埋め込みの有用性について検討する。
論文 参考訳(メタデータ) (2022-10-20T04:17:03Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
本研究では、事前学習された言語モデルを用いて、文章の感情情報を学習し、音声の感情分析を行う。
本稿では,言語モデルを用いた擬似ラベルに基づく半教師付き訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T20:15:21Z) - Let's be explicit about that: Distant supervision for implicit discourse
relation classification via connective prediction [0.0]
暗黙の談話関係分類では,任意の談話接続が存在しない場合,隣り合う文間の関係を予測したい。
我々は,暗黙関係の明示を通じてデータ不足を回避し,タスクを2つのサブプロブレム(言語モデリングと明示的談話関係分類)に減らした。
実験結果から,本手法は同等性能の代替モデルよりも遥かに単純であるにもかかわらず,最先端技術よりもはるかに優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T17:57:32Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z) - Analysis and Evaluation of Language Models for Word Sense Disambiguation [18.001457030065712]
トランスフォーマーベースの言語モデルは、嵐によってNLPの多くの分野を取り込んでいる。
BERTは、ワードセンス毎に限られた数のサンプルが利用できる場合でも、高いレベルの感覚の区別を正確に捉えることができる。
BERTとその派生種は既存の評価ベンチマークの大部分を支配している。
論文 参考訳(メタデータ) (2020-08-26T15:07:07Z) - Labeling Explicit Discourse Relations using Pre-trained Language Models [0.0]
最先端のモデルは手作りの機能を使ってFスコアの45%をわずかに上回っている。
事前訓練された言語モデルは、微調整された場合、言語的特徴を置き換えるのに十分強力であることがわかった。
言語的な特徴を使わずに、モデルが知識集約型モデルより優れているのは、これが初めてである。
論文 参考訳(メタデータ) (2020-06-21T17:18:01Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。