論文の概要: The Society of HiveMind: Multi-Agent Optimization of Foundation Model Swarms to Unlock the Potential of Collective Intelligence
- arxiv url: http://arxiv.org/abs/2503.05473v2
- Date: Thu, 13 Mar 2025 14:20:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 12:09:35.818323
- Title: The Society of HiveMind: Multi-Agent Optimization of Foundation Model Swarms to Unlock the Potential of Collective Intelligence
- Title(参考訳): The Society of HiveMind: The Society of HiveMind: Multi-Agent Optimization of Foundation Model Swarms to openlock the potential of Collective Intelligence
- Authors: Noah Mamie, Susie Xi Rao,
- Abstract要約: 複数のAIファンデーションモデル間のインタラクションをオーケストレーションするフレームワークを開発する。
このフレームワークは、主に現実世界の知識を必要とするタスクに対して、無視可能なメリットを提供する。
一方、我々は、集中的な論理的推論を必要とするタスクの大幅な改善について言及する。
- 参考スコア(独自算出の注目度): 6.322831694506287
- License:
- Abstract: Multi-agent systems address issues of accessibility and scalability of artificial intelligence (AI) foundation models, which are often represented by large language models. We develop a framework - the "Society of HiveMind" (SOHM) - that orchestrates the interaction between multiple AI foundation models, imitating the observed behavior of animal swarms in nature by following modern evolutionary theories. On the one hand, we find that the SOHM provides a negligible benefit on tasks that mainly require real-world knowledge. On the other hand, we remark a significant improvement on tasks that require intensive logical reasoning, indicating that multi-agent systems are capable of increasing the reasoning capabilities of the collective compared to the individual agents. Our findings demonstrate the potential of combining a multitude of diverse AI foundation models to form an artificial swarm intelligence capable of self-improvement through interactions with a given environment.
- Abstract(参考訳): マルチエージェントシステムは、人工知能(AI)基盤モデルのアクセシビリティとスケーラビリティの問題に対処する。
複数のAI基盤モデル間の相互作用を編成し、現代の進化理論に従うことによって、自然界における動物の群れの観察行動を模倣するフレームワーク、"Society of HiveMind"(SOHM)を開発した。
一方、SOHMは現実世界の知識を必要とするタスクに対して無視可能な利点を提供する。
一方、多エージェントシステムでは、個々のエージェントと比較して、集団の推論能力を高めることができることを示すため、集中的な論理的推論を必要とするタスクに対する大幅な改善が指摘されている。
我々の研究結果は、様々なAI基盤モデルを組み合わせて、与えられた環境との相互作用を通じて自己改善が可能な人工群知能を形成する可能性を示している。
関連論文リスト
- LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
大規模言語モデル(LLM)ベースのAIエージェントは、人間のような知性を達成するために、大きな進歩を遂げた。
LMAgentは,マルチモーダル LLM に基づく大規模かつマルチモーダルなエージェント社会である。
LMAgentでは、友人とチャットする以外に、エージェントは自動で商品を閲覧、購入、レビューしたり、ライブストリーミングのeコマースを行うこともできる。
論文 参考訳(メタデータ) (2024-12-12T12:47:09Z) - Foundations of Multisensory Artificial Intelligence [32.56967614091527]
この論文は、多感覚AIの機械学習基盤を前進させることを目的としている。
第1部では,タスクに対する新たな情報を生み出すために,モーダルティが相互にどのように相互作用するかを定式化する理論的枠組みを提案する。
第2部では、多くのモダリティやタスクを一般化する実用的なマルチモーダル基礎モデルの設計について検討する。
論文 参考訳(メタデータ) (2024-04-29T14:45:28Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
1500万の画像テキストペアを事前訓練した,新たに設計されたマルチモーダル基礎モデルを提案する。
視覚的エンコーダも言語的エンコーダもマルチモーダルで訓練され,脳に近いことが判明した。
論文 参考訳(メタデータ) (2022-08-17T12:36:26Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Deep Interpretable Models of Theory of Mind For Human-Agent Teaming [0.7734726150561086]
我々は、他の観測対象の意図をモデル化するための解釈可能なモジュラー・ニューラル・フレームワークを開発する。
Minecraftの検索および救助タスクで、人間の参加者のデータに関する実験を行い、アプローチの有効性を実証します。
論文 参考訳(メタデータ) (2021-04-07T06:18:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。