Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data
- URL: http://arxiv.org/abs/2503.05540v1
- Date: Fri, 07 Mar 2025 16:08:53 GMT
- Title: Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data
- Authors: Leonel Rozo, Miguel González-Duque, Noémie Jaquier, Søren Hauberg,
- Abstract summary: Latent variable models are powerful tools for learning low-dimensional manifold from high-dimensional data.<n>This paper generalizes previous work and allows us to handle complex tasks in various domains, including robot motion synthesis and analysis of brain connectomes.
- Score: 12.424539896723603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent variable models are powerful tools for learning low-dimensional manifolds from high-dimensional data. However, when dealing with constrained data such as unit-norm vectors or symmetric positive-definite matrices, existing approaches ignore the underlying geometric constraints or fail to provide meaningful metrics in the latent space. To address these limitations, we propose to learn Riemannian latent representations of such geometric data. To do so, we estimate the pullback metric induced by a Wrapped Gaussian Process Latent Variable Model, which explicitly accounts for the data geometry. This enables us to define geometry-aware notions of distance and shortest paths in the latent space, while ensuring that our model only assigns probability mass to the data manifold. This generalizes previous work and allows us to handle complex tasks in various domains, including robot motion synthesis and analysis of brain connectomes.
Related papers
- Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding [41.601022263772535]
Dimensionality reduction aims to simplify complex data by reducing its feature dimensionality while preserving essential patterns, with core applications in data analysis and visualisation.
To preserve the underlying data structure, multi-dimensional scaling (MDS) methods focus on preserving pairwise dissimilarities, such as distances.
arXiv Detail & Related papers (2025-03-23T10:03:22Z) - Score-based pullback Riemannian geometry [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.
We produce high-quality geodesics through the data support and reliably estimates the intrinsic dimension of the data manifold.
Our framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Pulling back symmetric Riemannian geometry for data analysis [0.0]
Ideal data analysis tools for data sets should account for non-linear geometry.
A rich mathematical structure to account for non-linear geometries has been shown to be able to capture the data geometry.
Many standard data analysis tools initially developed for data in Euclidean space can be generalised efficiently to data on a symmetric Riemannian manifold.
arXiv Detail & Related papers (2024-03-11T10:59:55Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
Gaussian process regression is widely used to provide well-calibrated uncertainty estimates.
It struggles with high-dimensional data because of the implicit low-dimensional manifold upon which the data actually lies.
In this paper we propose a technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way.
arXiv Detail & Related papers (2023-10-30T09:52:48Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
The Fisher-Rao information geometry allows for leveraging tools from differential geometry.
We will present some practical uses of these geometric tools in the framework of elliptical distributions.
arXiv Detail & Related papers (2023-10-02T09:23:32Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Identifying latent distances with Finslerian geometry [6.0188611984807245]
Generative models cause the data space and the geodesics to be at best impractical, and at worst impossible to manipulate.
In this work, we propose another metric whose geodesics explicitly minimise the expected length of the pullback metric.
In high dimensions, we prove that both metrics converge to each other at a rate of $Oleft(frac1Dright)$.
arXiv Detail & Related papers (2022-12-20T05:57:27Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z) - Geometry-Aware Hamiltonian Variational Auto-Encoder [0.0]
Variational auto-encoders (VAEs) have proven to be a well suited tool for performing dimensionality reduction by extracting latent variables lying in a potentially much smaller dimensional space than the data.
However, such generative models may perform poorly when trained on small data sets which are abundant in many real-life fields such as medicine.
We argue that such latent space modelling provides useful information about its underlying structure leading to far more meaningfuls, more realistic data-generation and more reliable clustering.
arXiv Detail & Related papers (2020-10-22T08:26:46Z) - On the minmax regret for statistical manifolds: the role of curvature [68.8204255655161]
Two-part codes and the minimum description length have been successful in delivering procedures to single out the best models.
We derive a sharper expression than the standard one given by the complexity, where the scalar curvature of the Fisher information metric plays a dominant role.
arXiv Detail & Related papers (2020-07-06T17:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.