論文の概要: Diffusion Models for Cayley Graphs
- arxiv url: http://arxiv.org/abs/2503.05558v1
- Date: Fri, 07 Mar 2025 16:33:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:19:55.135077
- Title: Diffusion Models for Cayley Graphs
- Title(参考訳): ケイリーグラフの拡散モデル
- Authors: Michael R. Douglas, Cristofero Fraser-Taliente,
- Abstract要約: 拡散モデルの枠組みにおける問題を定式化する方法を示す。
本稿では,従来の比較アルゴリズムよりも大幅に改善された逆スコアのアンサッツを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We review the problem of finding paths in Cayley graphs of groups and group actions, using the Rubik's cube as an example, and we list several more examples of significant mathematical interest. We then show how to formulate these problems in the framework of diffusion models. The exploration of the graph is carried out by the forward process, while finding the target nodes is done by the inverse backward process. This systematizes the discussion and suggests many generalizations. To improve exploration, we propose a ``reversed score'' ansatz which substantially improves over previous comparable algorithms.
- Abstract(参考訳): 我々は、ルービックキューブを例として用いて、群と群作用のケイリーグラフの経路を見つける問題を概観し、重要な数学的関心のさらにいくつかの例を列挙する。
次に、拡散モデルの枠組みでこれらの問題を定式化する方法を示す。
グラフの探索は前処理によって行われ、対象ノードの探索は逆の逆処理によって行われる。
これは議論を体系化し、多くの一般化を提案する。
探索を改善するために,従来の比較アルゴリズムよりも大幅に改良された'reversed score'アンサッツを提案する。
関連論文リスト
- Convergence Guarantees for the DeepWalk Embedding on Block Models [9.898607871253775]
ブロックモデル(SBM)から得られたグラフ上でDeepWalkアルゴリズムの使い方を示す。
単純化されているにもかかわらず、SBMは大きなグラフ上のアルゴリズムを解析するための古典的なモデルであることが証明されている。
論文 参考訳(メタデータ) (2024-10-26T18:35:11Z) - Gotta match 'em all: Solution diversification in graph matching matched filters [13.841897638543033]
非常に大きな背景グラフに複数のノイズを埋め込んだテンプレートグラフを見つけるための新しい手法を提案する。
提案手法は,Sussmanらによって提案されたグラフマッチング・マッチング・フィルタ技術に基づいている。
論文 参考訳(メタデータ) (2023-08-25T15:53:30Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - Optimization on Manifolds via Graph Gaussian Processes [4.471962177124311]
本稿では,EmphGaussianプロセス上信頼度有界アルゴリズムに多様体学習技術を統合することにより,多様体上の目的関数を最適化する。
論文 参考訳(メタデータ) (2022-10-20T02:15:34Z) - Quantitative approach to Grover's quantum walk on graphs [62.997667081978825]
グラフ上の連続時間量子ウォークに着目したGroverの探索アルゴリズムについて検討する。
関連する量子ウォークに便利なグラフトポロジーを見つける代わりに、グラフトポロジーを修正し、ラプラシアンを基礎とするグラフを変化させる。
論文 参考訳(メタデータ) (2022-07-04T19:33:06Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
グラフマッチングアルゴリズムは、クエリグラフの埋め込みをデータグラフGに列挙する。
マッチング順序は、これらのバックトラックに基づくサブグラフマッチングアルゴリズムの時間効率において重要な役割を果たす。
本稿では,Reinforcement Learning (RL) と Graph Neural Networks (GNN) 技術を適用して,グラフマッチングアルゴリズムの高品質なマッチング順序を生成する。
論文 参考訳(メタデータ) (2022-01-25T00:10:03Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
本稿では,未知数の幾何学的モデル,例えばホモグラフィーを求めるアルゴリズムを提案する。
複数の幾何モデルを用いることで精度が向上するアプリケーションをいくつか提示する。
これには、複数の一般化されたホモグラフからのポーズ推定、高速移動物体の軌道推定が含まれる。
論文 参考訳(メタデータ) (2021-03-25T14:35:07Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
逆例は機械学習モデルにおいて広く研究されている現象である。
そこで本研究では,$k$-nearest 近傍分類の逆ロバスト性を評価するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:49:10Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
スペクトルクラスタリングにインスパイアされた手法として,ランダムな次元還元プロジェクションから得られた行列スケッチを用いる。
提案手法は,完全に動的なブロックモデルストリームが与えられた場合,性能の高いクラスタリング結果が得られる埋め込みを生成する。
また、ブロックモデルパラメータがその後の埋め込みの必要次元に与える影響についても検討し、ランダムなプロジェクションが分散メモリにおけるグラフクラスタリングの性能を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-07-24T17:38:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。