BARK: A Fully Bayesian Tree Kernel for Black-box Optimization
- URL: http://arxiv.org/abs/2503.05574v1
- Date: Fri, 07 Mar 2025 16:56:09 GMT
- Title: BARK: A Fully Bayesian Tree Kernel for Black-box Optimization
- Authors: Toby Boyne, Jose Pablo Folch, Robert M Lee, Behrang Shafei, Ruth Misener,
- Abstract summary: We perform Bayesian optimization using a Gaussian process perspective on Bayesian Additive Regression Trees (BART)<n>Our BART Kernel (BARK) uses tree agreement to define a posterior over piecewise-constant functions, and we explore the space of tree kernels using a Markov chain Monte Carlo approach.<n>Our experiments show the strong performance of BARK on both synthetic and applied benchmarks.
- Score: 5.547538839664342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We perform Bayesian optimization using a Gaussian process perspective on Bayesian Additive Regression Trees (BART). Our BART Kernel (BARK) uses tree agreement to define a posterior over piecewise-constant functions, and we explore the space of tree kernels using a Markov chain Monte Carlo approach. Where BART only samples functions, the resulting BARK model obtains samples of Gaussian processes defining distributions over functions, which allow us to build acquisition functions for Bayesian optimization. Our tree-based approach enables global optimization over the surrogate, even for mixed-feature spaces. Moreover, where many previous tree-based kernels provide uncertainty quantification over function values, our sampling scheme captures uncertainty over the tree structure itself. Our experiments show the strong performance of BARK on both synthetic and applied benchmarks, due to the combination of our fully Bayesian surrogate and the optimization procedure.
Related papers
- Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Sample-and-Bound for Non-Convex Optimization [18.30858789210194]
We propose new sampling methods for non-dimensional objective optimization that adapts Monte Carlo benchmarks to improve efficiency.
We evaluate the proposed high-order baseline and competitive benchmarks algorithms aggressively.
arXiv Detail & Related papers (2024-01-09T20:45:47Z) - Model-based Causal Bayesian Optimization [78.120734120667]
We propose model-based causal Bayesian optimization (MCBO)
MCBO learns a full system model instead of only modeling intervention-reward pairs.
Unlike in standard Bayesian optimization, our acquisition function cannot be evaluated in closed form.
arXiv Detail & Related papers (2022-11-18T14:28:21Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Additive Tree-Structured Conditional Parameter Spaces in Bayesian
Optimization: A Novel Covariance Function and a Fast Implementation [34.89735938765757]
We generalize the additive assumption to tree-structured functions, showing improved sample-efficiency, wider applicability and greater flexibility.
By incorporating the structure information of parameter spaces and the additive assumption in the BO loop, we develop a parallel algorithm to optimize the acquisition function.
We demonstrate our method on an optimization benchmark function, on pruning pre-trained VGG16 and Res50 models as well as on searching activation functions of ResNet20.
arXiv Detail & Related papers (2020-10-06T16:08:58Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
We propose a novel BO routine pairing a hierarchical Gaussian process with an information-theoretic framework to generate a growing pool of realizations.
We demonstrate that BOSH provides more efficient and higher-precision optimization than standard BO across synthetic benchmarks, simulation optimization, reinforcement learning and hyper- parameter tuning tasks.
arXiv Detail & Related papers (2020-07-02T07:35:49Z) - Additive Tree-Structured Covariance Function for Conditional Parameter
Spaces in Bayesian Optimization [34.89735938765757]
We generalize the additive assumption to tree-structured functions.
By incorporating the structure information of parameter spaces and the additive assumption in the BO loop, we develop a parallel algorithm to optimize the acquisition function.
arXiv Detail & Related papers (2020-06-21T11:21:55Z) - Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation [60.93091603232817]
We develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function.
This is done by sampling the exploration-exploitation trade-off parameter from a distribution.
We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret.
arXiv Detail & Related papers (2020-06-08T00:28:41Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.