MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification
- URL: http://arxiv.org/abs/2503.05582v1
- Date: Fri, 07 Mar 2025 17:07:51 GMT
- Title: MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification
- Authors: Yang Mu, Muhammad Shahzad, Xiao Xiang Zhu,
- Abstract summary: We propose a novel Multiscale Periodic Time Series Network (MPTSNet)<n>MPTSNet integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series.<n>The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.
- Score: 18.142252811096643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate Time Series Classification (MTSC) is crucial in extensive practical applications, such as environmental monitoring, medical EEG analysis, and action recognition. Real-world time series datasets typically exhibit complex dynamics. To capture this complexity, RNN-based, CNN-based, Transformer-based, and hybrid models have been proposed. Unfortunately, current deep learning-based methods often neglect the simultaneous construction of local features and global dependencies at different time scales, lacking sufficient feature extraction capabilities to achieve satisfactory classification accuracy. To address these challenges, we propose a novel Multiscale Periodic Time Series Network (MPTSNet), which integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series. Recognizing the multi-periodicity and complex variable correlations in time series, we use the Fourier transform to extract primary periods, enabling us to decompose data into multiscale periodic segments. Leveraging the inherent strengths of CNN and attention mechanism, we introduce the PeriodicBlock, which adaptively captures local patterns and global dependencies while offering enhanced interpretability through attention integration across different periodic scales. The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.
Related papers
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.
We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.
Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - MuSiCNet: A Gradual Coarse-to-Fine Framework for Irregularly Sampled Multivariate Time Series Analysis [45.34420094525063]
We introduce a novel perspective that irregularity is essentially relative in some senses.<n>MuSiCNet is an ISMTS analysis framework that competitive with SOTA in three mainstream tasks consistently.
arXiv Detail & Related papers (2024-12-02T02:50:01Z) - TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification [13.110156202816112]
We propose a novel multi-view approach to capture patterns with properties like shift equivariance.
Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC.
Our approach achieves average accuracy improvements of 4.01-6.45% and 7.93% respectively, over leading TSC models.
arXiv Detail & Related papers (2024-06-06T18:05:10Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate
Time Series Forecasting [18.192600104502628]
Time series data often exhibit diverse intra-series and inter-series correlations.
Extensive experiments are conducted on several real-world datasets to showcase the effectiveness of MSGNet.
arXiv Detail & Related papers (2023-12-31T08:23:24Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
We propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data.
To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module.
arXiv Detail & Related papers (2023-06-12T13:42:56Z) - Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series [0.6749750044497732]
We introduce kernel-based statistical tests of joint independence in multivariate time series.
We show how the method robustly uncovers significant higher-order dependencies in synthetic examples.
Our method can aid in uncovering high-order interactions in data.
arXiv Detail & Related papers (2023-05-15T10:38:24Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.