Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series
- URL: http://arxiv.org/abs/2305.08529v3
- Date: Thu, 2 Nov 2023 11:43:59 GMT
- Title: Kernel-based Joint Independence Tests for Multivariate Stationary and
Non-stationary Time Series
- Authors: Zhaolu Liu and Robert L. Peach and Felix Laumann and Sara Vallejo
Mengod and Mauricio Barahona
- Abstract summary: We introduce kernel-based statistical tests of joint independence in multivariate time series.
We show how the method robustly uncovers significant higher-order dependencies in synthetic examples.
Our method can aid in uncovering high-order interactions in data.
- Score: 0.6749750044497732
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate time series data that capture the temporal evolution of
interconnected systems are ubiquitous in diverse areas. Understanding the
complex relationships and potential dependencies among co-observed variables is
crucial for the accurate statistical modelling and analysis of such systems.
Here, we introduce kernel-based statistical tests of joint independence in
multivariate time series by extending the $d$-variable Hilbert-Schmidt
independence criterion (dHSIC) to encompass both stationary and non-stationary
processes, thus allowing broader real-world applications. By leveraging
resampling techniques tailored for both single- and multiple-realisation time
series, we show how the method robustly uncovers significant higher-order
dependencies in synthetic examples, including frequency mixing data and logic
gates, as well as real-world climate, neuroscience, and socioeconomic data. Our
method adds to the mathematical toolbox for the analysis of multivariate time
series and can aid in uncovering high-order interactions in data.
Related papers
- Advancing multivariate time series similarity assessment: an integrated computational approach [0.0]
We propose an integrated computational approach for assessing the similarity of multivariate time series data.
MTASA is built upon a hybrid methodology designed to optimize time series alignment, complemented by a multiprocessing engine.
Results from this study highlight MTASA's superiority, achieving approximately 1.5 times greater accuracy and twice the speed compared to existing state-of-the-art integrated frameworks.
arXiv Detail & Related papers (2024-03-16T23:52:25Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Latent Processes Identification From Multi-View Time Series [17.33428123777779]
We propose a novel framework that employs the contrastive learning technique to invert the data generative process for enhanced identifiability.
MuLTI integrates a permutation mechanism that merges corresponding overlapped variables by the establishment of an optimal transport formula.
arXiv Detail & Related papers (2023-05-14T14:21:58Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Predicting the State of Synchronization of Financial Time Series using
Cross Recurrence Plots [75.20174445166997]
This study introduces a new method for predicting the future state of synchronization of the dynamics of two financial time series.
We adopt a deep learning framework for methodologically addressing the prediction of the synchronization state.
We find that the task of predicting the state of synchronization of two time series is in general rather difficult, but for certain pairs of stocks attainable with very satisfactory performance.
arXiv Detail & Related papers (2022-10-26T10:22:28Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z) - Time Series Alignment with Global Invariances [14.632733235929926]
We propose a novel distance accounting both feature space and temporal variabilities by learning a latent global transformation of the feature space together with a temporal alignment.
We present two algorithms for the computation of time series barycenters under this new geometry.
We illustrate the interest of our approach on both simulated and real world data and show the robustness of our approach compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-02-10T15:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.