From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing
- URL: http://arxiv.org/abs/2503.05598v1
- Date: Fri, 07 Mar 2025 17:25:25 GMT
- Title: From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing
- Authors: Prashant K. Jha,
- Abstract summary: The study covers foundational models such as Deep Operator Networks (DeepONet) and Principal Component Analysis-based Neural Networks (PCANet)<n>The review delves into applying neural operators as surrogates in Bayesian inference problems, showcasing their effectiveness in accelerating posterior inference while maintaining accuracy.<n>It outlines emerging strategies to address these issues, such as residual-based error correction and multi-level training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This focused review explores a range of neural operator architectures for approximating solutions to parametric partial differential equations (PDEs), emphasizing high-level concepts and practical implementation strategies. The study covers foundational models such as Deep Operator Networks (DeepONet), Principal Component Analysis-based Neural Networks (PCANet), and Fourier Neural Operators (FNO), providing comparative insights into their core methodologies and performance. These architectures are demonstrated on two classical linear parametric PDEs: the Poisson equation and linear elastic deformation. Beyond forward problem-solving, the review delves into applying neural operators as surrogates in Bayesian inference problems, showcasing their effectiveness in accelerating posterior inference while maintaining accuracy. The paper concludes by discussing current challenges, particularly in controlling prediction accuracy and generalization. It outlines emerging strategies to address these issues, such as residual-based error correction and multi-level training. This review can be seen as a comprehensive guide to implementing neural operators and integrating them into scientific computing workflows.
Related papers
- Quantifying Training Difficulty and Accelerating Convergence in Neural Network-Based PDE Solvers [9.936559796069844]
We investigate the training dynamics of neural network-based PDE solvers.
We find that two techniques, partition of unity (PoU) and variance scaling (VS) enhance the effective rank.
Experiments using popular PDE-solving frameworks, such as PINN, Deep Ritz, and the operator learning framework DeepOnet, confirm that these techniques consistently speed up convergence.
arXiv Detail & Related papers (2024-10-08T19:35:19Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.<n>To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.<n> Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - DeepONet for Solving Nonlinear Partial Differential Equations with Physics-Informed Training [2.44755919161855]
We investigate the use of operator learning, specifically DeepONet, for solving nonlinear partial differential equations (PDEs)<n>This study examines the performance of DeepONet in physics-informed training, focusing on two key aspects: (1) the approximation capabilities of deep branch and trunk networks, and (2) the generalization error in Sobolev norms.
arXiv Detail & Related papers (2024-10-06T03:43:56Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
Operator learning refers to the application of ideas from machine learning to approximate operators mapping between Banach spaces of functions.
This review focuses on neural operators, built on the success of deep neural networks in the approximation of functions defined on finite dimensional Euclidean spaces.
arXiv Detail & Related papers (2024-02-24T04:40:27Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Improved architectures and training algorithms for deep operator
networks [0.0]
Operator learning techniques have emerged as a powerful tool for learning maps between infinite-dimensional Banach spaces.
We analyze the training dynamics of deep operator networks (DeepONets) through the lens of Neural Tangent Kernel (NTK) theory.
arXiv Detail & Related papers (2021-10-04T18:34:41Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
End-to-end training of neural network solvers for graph optimization problems such as the Travelling Salesperson Problem (TSP) have seen a surge of interest recently.
While state-of-the-art learning-driven approaches perform closely to classical solvers when trained on trivially small sizes, they are unable to generalize the learnt policy to larger instances at practical scales.
This work presents an end-to-end neural optimization pipeline that unifies several recent papers in order to identify the principled biases, model architectures and learning algorithms that promote generalization to instances larger than those seen in training.
arXiv Detail & Related papers (2020-06-12T10:14:15Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.