Neural Hamiltonian Operator
- URL: http://arxiv.org/abs/2507.01313v1
- Date: Wed, 02 Jul 2025 02:56:49 GMT
- Title: Neural Hamiltonian Operator
- Authors: Qian Qi,
- Abstract summary: An alternative to traditional dynamic programming is Pontryagin's Maximum Principle (PMP), which recasts the problem as a system of Forward-Backward Differential Equations (FBSDEs)<n>In this paper, we introduce a formal framework for solving such problems with deep learning by defining a textbfNeural Hamiltonian Operator (NHO).<n>We show how the optimal NHO can be found by training the underlying networks to enforce the consistency conditions dictated by the PMP.
- Score: 2.1756081703276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic control problems in high dimensions are notoriously difficult to solve due to the curse of dimensionality. An alternative to traditional dynamic programming is Pontryagin's Maximum Principle (PMP), which recasts the problem as a system of Forward-Backward Stochastic Differential Equations (FBSDEs). In this paper, we introduce a formal framework for solving such problems with deep learning by defining a \textbf{Neural Hamiltonian Operator (NHO)}. This operator parameterizes the coupled FBSDE dynamics via neural networks that represent the feedback control and an ansatz for the value function's spatial gradient. We show how the optimal NHO can be found by training the underlying networks to enforce the consistency conditions dictated by the PMP. By adopting this operator-theoretic view, we situate the deep FBSDE method within the rigorous language of statistical inference, framing it as a problem of learning an unknown operator from simulated data. This perspective allows us to prove the universal approximation capabilities of NHOs under general martingale drivers and provides a clear lens for analyzing the significant optimization challenges inherent to this class of models.
Related papers
- Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent [7.248102801711294]
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points.<n>We introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry.<n>We propose computational strategies that enable both efficient training and fully parameter-free inference.
arXiv Detail & Related papers (2025-07-15T16:33:01Z) - Neural Expectation Operators [2.1756081703276]
This paper introduces textbfMeasure Learning, a paradigm for modeling ambiguity via non-linear expectations.<n>We define Neural Expectation Operators as solutions to Backward Differential Equations (BSDEs) whose drivers are parameterized by neural networks.<n>We provide constructive methods for enforcing key axiomatic properties, such as convexity, by architectural design.
arXiv Detail & Related papers (2025-07-13T06:19:28Z) - Stochastic Operator Network: A Stochastic Maximum Principle Based Approach to Operator Learning [2.139298948138063]
We develop a novel framework for uncertainty quantification in operator learning, the Operator Network (SON)<n>By formulating the branch net as an SDE and backpropagating through the adjoint BSDE, we replace the gradient of the loss function with the gradient of the Hamiltonian from Stohastic Maximum Principle in the SGD update.<n>This allows SON to learn the uncertainty present in operators through its diffusion parameters.
arXiv Detail & Related papers (2025-07-10T19:44:58Z) - Universal Approximation Theorem for Deep Q-Learning via FBSDE System [2.1756081703276]
This paper establishes a Universal Approximation Theorem for a class of Deep Q-Networks (DQNs)<n>We show that layers of a deep residual network, conceived as neural operators acting on function spaces, can approximate the action of the Bellman operator.
arXiv Detail & Related papers (2025-05-09T13:11:55Z) - From Theory to Application: A Practical Introduction to Neural Operators in Scientific Computing [0.0]
The study covers foundational models such as Deep Operator Networks (DeepONet) and Principal Component Analysis-based Neural Networks (PCANet)<n>The review delves into applying neural operators as surrogates in Bayesian inference problems, showcasing their effectiveness in accelerating posterior inference while maintaining accuracy.<n>It outlines emerging strategies to address these issues, such as residual-based error correction and multi-level training.
arXiv Detail & Related papers (2025-03-07T17:25:25Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.<n>To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.<n> Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics [8.528817025440746]
This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations.
We propose a neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator.
Our results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation.
arXiv Detail & Related papers (2024-09-17T08:12:38Z) - Hamilton-Jacobi Based Policy-Iteration via Deep Operator Learning [9.950128864603599]
We incorporate DeepONet with a recently developed policy scheme to numerically solve optimal control problems.
A notable feature of our approach is that once the neural network is trained, the solution to the optimal control problem and HJB equations can be inferred quickly.
arXiv Detail & Related papers (2024-06-16T12:53:17Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - NTopo: Mesh-free Topology Optimization using Implicit Neural
Representations [35.07884509198916]
We present a novel machine learning approach to tackle topology optimization problems.
We use multilayer perceptrons (MLPs) to parameterize both density and displacement fields.
As we show through our experiments, a major benefit of our approach is that it enables self-supervised learning of continuous solution spaces.
arXiv Detail & Related papers (2021-02-22T05:25:22Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.