Backpropagation through Soft Body: Investigating Information Processing in Brain-Body Coupling Systems
- URL: http://arxiv.org/abs/2503.05601v1
- Date: Thu, 23 Jan 2025 21:05:04 GMT
- Title: Backpropagation through Soft Body: Investigating Information Processing in Brain-Body Coupling Systems
- Authors: Hiroki Tomioka, Katsuma Inoue, Yasuo Kuniyoshi, Kohei Nakajima,
- Abstract summary: Animals achieve sophisticated behavioral control through dynamic coupling of the brain, body, and environment.<n>Co-design approach has been suggested for generating refined agents without designing each component separately.<n>We show that optimized brain functionalities can be embedded into bodies using physical reservoir computing techniques.
- Score: 2.0686733932673604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animals achieve sophisticated behavioral control through dynamic coupling of the brain, body, and environment. Accordingly, the co-design approach, in which both the controllers and the physical properties are optimized simultaneously, has been suggested for generating refined agents without designing each component separately. In this study, we aim to reveal how the function of the information processing is distributed between brains and bodies while applying the co-design approach. Using a framework called ``backpropagation through soft body," we developed agents to perform specified tasks and analyzed their mechanisms. The tasks included classification and corresponding behavioral association, nonlinear dynamical system emulation, and autonomous behavioral generation. In each case, our analyses revealed reciprocal relationships between the brains and bodies. In addition, we show that optimized brain functionalities can be embedded into bodies using physical reservoir computing techniques. Our results pave the way for efficient designs of brain--body coupling systems.
Related papers
- Sectoral Coupling in Linguistic State Space [0.0]
We introduce a system of sectoral coupling constants that characterize how one cognitive sector influences another within a fixed level of abstraction.<n>We provide a detailed taxonomy of these intra-level coupling roles, covering domains such as perceptual integration, memory access and formation, planning, meta-cognition, execution control, and affective modulation.<n>This framework contributes to a mechanistic and interpretable approach to modeling complex cognition, with applications in AI system design, alignment diagnostics, and the analysis of emergent agent behavior.
arXiv Detail & Related papers (2025-06-15T17:58:54Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.<n>Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - A Differentiable Approach to Multi-scale Brain Modeling [3.5874544981360987]
We present a multi-scale differentiable brain modeling workflow utilizing BrainPy, a unique differentiable brain simulator.
At the single-neuron level, we implement differentiable neuron models and employ gradient methods to optimize their fit to electrophysiological data.
On the network level, we incorporate connectomic data to construct biologically constrained network models.
arXiv Detail & Related papers (2024-06-28T07:41:31Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Neuromechanical Autoencoders: Learning to Couple Elastic and Neural
Network Nonlinearity [15.47367187516723]
We seek to develop machine learning analogs of.
mechanical intelligence.
We jointly learn the morphology of complex nonlinear elastic solids along with a.
deep neural network to control it.
arXiv Detail & Related papers (2023-01-31T19:04:28Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Meta-brain Models: biologically-inspired cognitive agents [0.0]
We propose a computational approach we call meta-brain models.
We will propose combinations of layers composed using specialized types of models.
We will conclude by proposing next steps in the development of this flexible and open-source approach.
arXiv Detail & Related papers (2021-08-31T05:20:53Z) - The whole brain architecture approach: Accelerating the development of
artificial general intelligence by referring to the brain [1.637145148171519]
It is difficult for an individual to design a software program that corresponds to the entire brain.
The whole-brain architecture approach divides the brain-inspired AGI development process into the task of designing the brain reference architecture.
This study proposes the Structure-constrained Interface Decomposition (SCID) method, which is a hypothesis-building method for creating a hypothetical component diagram.
arXiv Detail & Related papers (2021-03-06T04:58:12Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
We propose a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning.
We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.
arXiv Detail & Related papers (2020-04-11T21:02:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.