論文の概要: Learning LLM Preference over Intra-Dialogue Pairs: A Framework for Utterance-level Understandings
- arxiv url: http://arxiv.org/abs/2503.05620v1
- Date: Fri, 07 Mar 2025 17:46:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:27.667909
- Title: Learning LLM Preference over Intra-Dialogue Pairs: A Framework for Utterance-level Understandings
- Title(参考訳): 対話内ペアによるLLMの学習: 発話レベルの理解のためのフレームワーク
- Authors: Xuanqing Liu, Luyang Kong, Wei Niu, Afshin Khashei, Belinda Zeng, Steve Johnson, Jon Jay, Davor Golac, Matt Pope,
- Abstract要約: 大規模言語モデル(LLM)は、ケース固有の微調整を必要とせずに複雑な対話タスクを処理できることが顕著に示されている。
本稿では,この課題に対処するための,シンプルながら効果的な枠組みを提案する。
本手法は、意図検出や対話状態追跡などのタスクを含む発話ごとの分類問題に特化して設計されている。
- 参考スコア(独自算出の注目度): 9.763273544617176
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in handling complex dialogue tasks without requiring use case-specific fine-tuning. However, analyzing live dialogues in real-time necessitates low-latency processing systems, making it impractical to deploy models with billions of parameters due to latency constraints. As a result, practitioners often prefer smaller models with millions of parameters, trained on high-quality, human-annotated datasets. Yet, curating such datasets is both time-consuming and costly. Consequently, there is a growing need to combine the scalability of LLM-generated labels with the precision of human annotations, enabling fine-tuned smaller models to achieve both higher speed and accuracy comparable to larger models. In this paper, we introduce a simple yet effective framework to address this challenge. Our approach is specifically designed for per-utterance classification problems, which encompass tasks such as intent detection, dialogue state tracking, and more. To mitigate the impact of labeling errors from LLMs -- the primary source of inaccuracies in student models -- we propose a noise-reduced preference learning loss. Experimental results demonstrate that our method significantly improves accuracy across utterance-level dialogue tasks, including sentiment detection (over $2\%$), dialogue act classification (over $1.5\%$), etc.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ケース固有の微調整を必要とせずに複雑な対話タスクを処理できることが顕著に示されている。
しかし、リアルタイムのライブ対話の分析は低レイテンシ処理システムを必要とするため、レイテンシの制約により数十億のパラメータを持つモデルをデプロイするのは現実的ではない。
その結果、実践者は数百万のパラメータを持つより小さなモデルを好むことが多く、高品質で人間の注釈付きデータセットで訓練される。
しかし、そのようなデータセットのキュレーションには時間と費用がかかります。
結果として、LLM生成ラベルのスケーラビリティと人間のアノテーションの精度を組み合わせる必要性が高まっており、微調整された小さなモデルでより高速で精度の高いモデルを実現することができる。
本稿では,この課題に対処するための,シンプルながら効果的な枠組みを提案する。
本手法は、意図検出や対話状態追跡などのタスクを含む発話ごとの分類問題に特化して設計されている。
学生モデルにおける不正確性の主な原因であるLCMのラベル付けエラーの影響を軽減するため,ノイズ低減型選好学習損失を提案する。
実験結果から,感情検出($2\%以上),対話行動分類($1.5\%以上)など,発話レベル対話タスクの精度を大幅に向上することが示された。
関連論文リスト
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Unified Parameter-Efficient Unlearning for LLMs [25.195126838721492]
大規模言語モデル(LLM)は自然言語処理に革命をもたらし、様々なタスクに対する高度な理解と推論を可能にする。
これは、モデルが不注意に機密情報や望ましくない情報を保持および拡散する可能性があるため、重要なプライバシーとセキュリティ上の懸念を提起する。
本稿では,非学習タスクを体系的に分類し,影響関数を用いた高精度な調整を行う,新しいインスタンス単位のアンラーニングフレームワークLLMEraserを紹介する。
論文 参考訳(メタデータ) (2024-11-30T07:21:02Z) - Balancing Accuracy and Efficiency in Multi-Turn Intent Classification for LLM-Powered Dialog Systems in Production [6.459396785817196]
本稿では,本システムにおけるスケーラビリティ向上と遅延低減のための新しい2つのアプローチを提案する。
まず,タスクの複雑さを低減し,マルチターン対話におけるパフォーマンスを向上させるために,意図ラベルを簡略化するシンボリックチューニングを提案する。
第2に,データ拡張と擬似ラベル作成にLLMを用いるフレームワークであるC-LARAを提案する。
論文 参考訳(メタデータ) (2024-11-19T07:48:35Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
現実世界のNLPアプリケーションでは、Large Language Models (LLMs) は巨大なデータセットの広範なトレーニングのために、有望なソリューションを提供する。
LLKDは、教師と学生の両方の信号を組み込んだ適応的なサンプル選択法である。
総合的な実験により,LLKDは高いデータ効率で,様々なデータセットで優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-11-12T18:57:59Z) - Intent Detection in the Age of LLMs [3.755082744150185]
インテント検出はタスク指向対話システム(TODS)の重要な構成要素である
従来のアプローチは、計算効率の良い教師付き文変換器エンコーダモデルに依存していた。
固有の世界知識を持つ生成的大言語モデル(LLM)の出現は、これらの課題に対処する新たな機会を提供する。
論文 参考訳(メタデータ) (2024-10-02T15:01:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
我々は,主に半教師あり学習の手法として,自己学習について研究している。
我々は,新しい不確かさを意識した自己学習フレームワークであるUPETを紹介する。
UPETは性能と効率の面で大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-10-19T02:18:29Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQMは,大規模な言語モデルに対して,翻訳におけるエラーの識別と分類を求めるプロンプト技術である。
テキスト内学習と微調整によるラベル付きデータの影響について検討する。
次に, PaLM-2モデルを用いてAutoMQMを評価し, スコアのプロンプトよりも性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-08-14T17:17:21Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
大規模事前学習言語モデル(PLM)は、多くのNLPタスクにまたがる優れた性能を示している。
対話状態追跡(DST)のようなより複雑なタスクでは、望ましい意図を確実に伝達するプロンプトを設計するのは簡単ではない。
対話文の長さを制限するためのサリエンシモデルを導入し、クエリ毎に多くの例を含めることができます。
論文 参考訳(メタデータ) (2023-02-12T15:05:10Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
スライス検出モデル(SDM)は、データポイントの低パフォーマンスなグループを自動的に識別する。
本稿では,NLPタスクの分類のための "Discover, Explain, improve (DEIM)" というベンチマークを提案する。
評価の結果,Edisaは情報的セマンティックな特徴を持つ誤り発生データポイントを正確に選択できることがわかった。
論文 参考訳(メタデータ) (2022-11-08T19:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。