論文の概要: Fairness-Aware Low-Rank Adaptation Under Demographic Privacy Constraints
- arxiv url: http://arxiv.org/abs/2503.05684v1
- Date: Fri, 07 Mar 2025 18:49:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:23:27.605561
- Title: Fairness-Aware Low-Rank Adaptation Under Demographic Privacy Constraints
- Title(参考訳): 復号化プライバシ制約下でのフェアネスを考慮した低ランク適応
- Authors: Parameswaran Kamalaruban, Mark Anderson, Stuart Burrell, Maeve Madigan, Piotr Skalski, David Sutton,
- Abstract要約: 事前訓練された基礎モデルはローランド適応(LoRA)を用いて特定のタスクに適応することができる
既存のフェアネスを意識した微調整手法は、機密属性や予測器への直接アクセスに依存している。
分散方式でトレーニング可能なLoRAベースの微調整手法のセットを紹介する。
- 参考スコア(独自算出の注目度): 4.647881572951815
- License:
- Abstract: Pre-trained foundation models can be adapted for specific tasks using Low-Rank Adaptation (LoRA). However, the fairness properties of these adapted classifiers remain underexplored. Existing fairness-aware fine-tuning methods rely on direct access to sensitive attributes or their predictors, but in practice, these sensitive attributes are often held under strict consumer privacy controls, and neither the attributes nor their predictors are available to model developers, hampering the development of fair models. To address this issue, we introduce a set of LoRA-based fine-tuning methods that can be trained in a distributed fashion, where model developers and fairness auditors collaborate without sharing sensitive attributes or predictors. In this paper, we evaluate three such methods - sensitive unlearning, adversarial training, and orthogonality loss - against a fairness-unaware baseline, using experiments on the CelebA and UTK-Face datasets with an ImageNet pre-trained ViT-Base model. We find that orthogonality loss consistently reduces bias while maintaining or improving utility, whereas adversarial training improves False Positive Rate Parity and Demographic Parity in some cases, and sensitive unlearning provides no clear benefit. In tasks where significant biases are present, distributed fairness-aware fine-tuning methods can effectively eliminate bias without compromising consumer privacy and, in most cases, improve model utility.
- Abstract(参考訳): 事前訓練された基礎モデルはLo-Rank Adaptation (LoRA)を使用して特定のタスクに適応することができる。
しかし、これらの適応型分類器の公平性は未解明のままである。
既存のフェアネスを意識した微調整手法は、センシティブな属性や予測者への直接アクセスに依存しているが、実際には、これらのセンシティブな属性は厳密な消費者プライバシコントロールの下で保持されることが多く、モデル開発者には属性も予測者も利用できないため、フェアモデルの開発を妨げている。
この問題に対処するために、モデル開発者と公正監査担当者が機密属性や予測者を共有することなく、分散方法でトレーニング可能なLoRAベースの微調整手法のセットを紹介します。
本稿では,CelebA と UTK-Face のデータセットをImageNet で事前学習した ViT-Base モデルを用いて実験し,不公平なベースラインに対して,センシティブ・アンラーニング,敵対的トレーニング,直交的損失の3つの手法を評価する。
直交的損失は実用性を維持したり改善したりしながらバイアスを一定に減らすのに対し、対角的トレーニングは偽陽性率パリティと復格的パリティを改善し、敏感な未学習は明確な利益をもたらす。
重要なバイアスが存在するタスクでは、分散公正を意識した微調整手法は、消費者のプライバシを損なうことなくバイアスを効果的に排除し、多くの場合、モデルの有用性を改善する。
関連論文リスト
- Understanding trade-offs in classifier bias with quality-diversity optimization: an application to talent management [2.334978724544296]
公正なAIモデルを開発する上での大きな課題は、そのようなモデルをトレーニングする上で利用可能なデータのバイアスにある。
本稿では,データセットに固有のバイアスを可視化し,公平性と正確性の間の潜在的なトレードオフを理解する方法を提案する。
論文 参考訳(メタデータ) (2024-11-25T22:14:02Z) - Fairness without Sensitive Attributes via Knowledge Sharing [13.141672574114597]
本稿では,信頼度に基づく階層型分類手法であるReckonerを提案する。
実験の結果、ReckonerはCompASデータセットとNew Adultデータセットにおいて、最先端のベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-09-27T06:16:14Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
教師なし方式で,単純かつ効果的な脱バイアス手法を提案する。
特徴埋め込み空間上でクラスタリングを行い、クラスタリング結果を利用して疑似属性を識別する。
次に,非偏り表現を学習するために,クラスタベースの新しい重み付け手法を用いる。
論文 参考訳(メタデータ) (2021-08-06T05:20:46Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。