Complex Networks for Pattern-Based Data Classification
- URL: http://arxiv.org/abs/2503.05772v1
- Date: Tue, 25 Feb 2025 18:36:02 GMT
- Title: Complex Networks for Pattern-Based Data Classification
- Authors: Josimar Chire, Khalid Mahmood, Zhao Liang,
- Abstract summary: We present two network-based classification techniques utilizing unique measures derived from the Minimum Spanning Tree and Single Source Shortest Path.<n>Compared to the existing classic high-level and machine-learning classification techniques, we have observed promising numerical results for our proposed approaches.
- Score: 1.0445957451908694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data classification techniques partition the data or feature space into smaller sub-spaces, each corresponding to a specific class. To classify into subspaces, physical features e.g., distance and distributions are utilized. This approach is challenging for the characterization of complex patterns that are embedded in the dataset. However, complex networks remain a powerful technique for capturing internal relationships and class structures, enabling High-Level Classification. Although several complex network-based classification techniques have been proposed, high-level classification by leveraging pattern formation to classify data has not been utilized. In this work, we present two network-based classification techniques utilizing unique measures derived from the Minimum Spanning Tree and Single Source Shortest Path. These network measures are evaluated from the data patterns represented by the inherent network constructed from each class. We have applied our proposed techniques to several data classification scenarios including synthetic and real-world datasets. Compared to the existing classic high-level and machine-learning classification techniques, we have observed promising numerical results for our proposed approaches. Furthermore, the proposed models demonstrate the following distinguished features in comparison to the previous high-level classification techniques: (1) A single network measure is introduced to characterize the data pattern, eliminating the need to determine weight parameters among network measures. Therefore, the model is largely simplified, while obtaining better classification results. (2) The metrics proposed are sensitive and used for classification with competitive results.
Related papers
- How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model [47.617093812158366]
We introduce the Random Hierarchy Model: a family of synthetic tasks inspired by the hierarchical structure of language and images.
We find that deep networks learn the task by developing internal representations invariant to exchanging equivalent groups.
Our results indicate how deep networks overcome the curse of dimensionality by building invariant representations.
arXiv Detail & Related papers (2023-07-05T09:11:09Z) - Hidden Classification Layers: Enhancing linear separability between
classes in neural networks layers [0.0]
We investigate the impact on deep network performances of a training approach.
We propose a neural network architecture which induces an error function involving the outputs of all the network layers.
arXiv Detail & Related papers (2023-06-09T10:52:49Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - A Network-Based High-Level Data Classification Algorithm Using
Betweenness Centrality [7.3810864598379755]
We propose a pure network-based high-level classification technique that uses the betweenness centrality measure.
We test this model in nine different real datasets and compare it with other nine traditional and well-known classification models.
arXiv Detail & Related papers (2020-09-16T23:14:13Z) - New complex network building methodology for High Level Classification
based on attribute-attribute interaction [0.0]
We propose a new methodology for network building based on attribute-attribute interactions that do not require normalization and capture the hidden patterns of the attributes.
The current results show us that could be used to improve some current high-level techniques.
arXiv Detail & Related papers (2020-09-14T21:58:33Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z) - New feature for Complex Network based on Ant Colony Optimization for
High Level Classification [0.0]
High level classification uses high level features, the existent patterns, relationship between the data and combines low and high level features for classification.
The present work proposed a novel feature to describe the architecture of the Network following an Ant Colony System approach.
arXiv Detail & Related papers (2020-08-29T00:22:43Z) - Leveraging Class Hierarchies with Metric-Guided Prototype Learning [5.070542698701158]
In many classification tasks, the set of target classes can be organized into a hierarchy.
This structure induces a semantic distance between classes, and can be summarised under the form of a cost matrix.
We propose to model the hierarchical class structure by integrating this metric in the supervision of a prototypical network.
arXiv Detail & Related papers (2020-07-06T20:22:08Z) - Conditional Classification: A Solution for Computational Energy
Reduction [2.182419181054266]
We propose a novel solution to reduce the computational complexity of convolutional neural network models.
Our proposed technique breaks the classification task into two steps: 1) coarse-grain classification, in which the input samples are classified among a set of hyper-classes, 2) fine-grain classification, in which the final labels are predicted among those hyper-classes detected at the first step.
arXiv Detail & Related papers (2020-06-29T03:50:39Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.