論文の概要: AI-Facilitated Collective Judgements
- arxiv url: http://arxiv.org/abs/2503.05830v1
- Date: Thu, 06 Mar 2025 00:06:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:52:51.999348
- Title: AI-Facilitated Collective Judgements
- Title(参考訳): AIによる集団判断
- Authors: Manon Revel, Théophile Pénigaud,
- Abstract要約: 本稿は、集合的嗜好の共通基盤を見つけることを目的とした、長年かつ新しく提案されてきた計算フレームワークの背景にある設計上の選択を解き放つ。
我々は、集団意志、センスメイキング、コンセンサス検索の合理的な表現を促進するための発見ツールとして、AIに精通した集団判断を探求する。
同時に、我々は、拘束決定の有効化、段階的な権限剥奪の促進、政治的成果の合理化など、危険な悪用に注意する。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License:
- Abstract: This article unpacks the design choices behind longstanding and newly proposed computational frameworks aimed at finding common grounds across collective preferences and examines their potential future impacts, both technically and normatively. It begins by situating AI-assisted preference elicitation within the historical role of opinion polls, emphasizing that preferences are shaped by the decision-making context and are seldom objectively captured. With that caveat in mind, we explore AI-facilitated collective judgment as a discovery tool for fostering reasonable representations of a collective will, sense-making, and agreement-seeking. At the same time, we caution against dangerously misguided uses, such as enabling binding decisions, fostering gradual disempowerment or post-rationalizing political outcomes.
- Abstract(参考訳): 本稿では,従来から提案されてきた,集団的選好における共通基盤の発見と,技術的にも規範的にも,その将来的な影響について検討することを目的とした,新しい計算フレームワークの背景にある設計上の選択肢を整理する。
最初は、意見投票の歴史的役割の中でAIが支援する選好の選好を定め、意思決定の文脈によって好みが形作られ、客観的に捕獲されることはめったにない、と強調する。
この点を念頭に置いて、私たちは、集団意志、センスメイキング、コンセンサス検索の合理的な表現を促進するための発見ツールとして、AIに精通した集団判断を探求する。
同時に、我々は、拘束決定の有効化、段階的な権限剥奪の促進、政治的成果の合理化など、危険な悪用に注意する。
関連論文リスト
- Policy Aggregation [21.21314301021803]
我々は、マルコフ決定プロセスにおいて、異なる報酬関数と最適なポリシーを持つ複数の個人とAIバリューアライメントの課題を考察する。
我々は、この問題を政策集約の1つとして定式化し、そこでは、望ましい集団的政策を特定することを目的としている。
主要な洞察は、社会的選択法は、国家が占有するポリトープのサブセットのボリュームと順序的選好を識別することで再解釈できるということである。
論文 参考訳(メタデータ) (2024-11-06T04:19:50Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - EARN Fairness: Explaining, Asking, Reviewing, and Negotiating Artificial Intelligence Fairness Metrics Among Stakeholders [5.216732191267959]
我々は、AIの専門知識を必要とせず、利害関係者間でのメトリクスの集合的決定を促進する新しいフレームワークEARN Fairnessを提案する。
このフレームワークは、適応可能なインタラクティブシステムと、公正度指標を説明するステークホルダ中心のEARNフェアネスプロセス、利害関係者の個人的メトリック選好、総括的メトリクス、メトリクス選択に関するコンセンサスを交渉する。
我々の研究によると、EARN Fairnessフレームワークは、利害関係者が個人の好みを表現し、合意に達することを可能にし、リスクの高い状況下で人間中心のAIフェアネスを実装するための実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T07:20:30Z) - Enhancing Language Model Rationality with Bi-Directional Deliberation Reasoning [73.77288647011295]
本稿では,BI-Directional Deliberation Reasoning (BIDDER)を導入し,言語モデルの意思決定合理性を高める。
私たちのアプローチには3つの重要なプロセスがあります。
歴史的データから、意思決定過程における不確実な情報を表すために隠された国家を推定すること。
隠れた状態を使って将来の潜在的な状態と潜在的な結果を予測する。
歴史的情報(過去コンテキスト)と長期的結果(未来コンテキスト)を統合することで、推論を知らせる。
論文 参考訳(メタデータ) (2024-07-08T16:48:48Z) - ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - Value Preferences Estimation and Disambiguation in Hybrid Participatory Systems [3.7846812749505134]
参加者が選択を行い、その選択に対するモチベーションを提供するハイブリッド参加システムを構想する。
参加者の選択とモチベーションの衝突を検出する状況に焦点を当てる。
本研究では,検出された不整合に対処しながら,参加者と対話して値の選好を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T17:16:28Z) - Bridging the gap: Towards an Expanded Toolkit for AI-driven Decision-Making in the Public Sector [6.693502127460251]
AIによる意思決定システムは、刑事司法、社会福祉、金融詐欺検出、公衆衛生などの分野に適用される。
これらのシステムは、機械学習(ML)モデルと公共セクターの意思決定の複雑な現実を整合させるという課題に直面している。
本稿では,データ側における分散シフトやラベルバイアス,過去の意思決定の影響,モデル出力側における競合する目標や人道支援など,不一致が発生する可能性のある5つの重要な課題について検討する。
論文 参考訳(メタデータ) (2023-10-29T17:44:48Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
決定推定係数は, 相手の意思決定に対する後悔度を低く抑えるのに必要であり, 十分であることを示す。
我々は、決定推定係数を他のよく知られた複雑性尺度の変種に結びつける新しい構造結果を提供する。
論文 参考訳(メタデータ) (2022-06-27T06:20:37Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
我々は,内因性,文脈依存型時間圧下でのエビデンスに基づく意思決定の一般的な設定のための枠組みを開発する。
意思決定戦略において、サプライズ、サスペンス、最適性の直感的な概念をモデル化する方法を実証する。
論文 参考訳(メタデータ) (2020-06-25T02:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。