Extracting and Emulsifying Cultural Explanation to Improve Multilingual Capability of LLMs
- URL: http://arxiv.org/abs/2503.05846v1
- Date: Fri, 07 Mar 2025 06:05:34 GMT
- Title: Extracting and Emulsifying Cultural Explanation to Improve Multilingual Capability of LLMs
- Authors: Hamin Koo, Jaehyung Kim,
- Abstract summary: Large Language Models (LLMs) have achieved remarkable success, but their English-centric training data limits performance in non-English languages.<n>We propose EMCEI, a simple yet effective approach that improves LLMs' multilingual capabilities by incorporating cultural context for more accurate and appropriate responses.
- Score: 8.97780713904412
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable success, but their English-centric training data limits performance in non-English languages, highlighting the need for enhancements in their multilingual capabilities. While some work on multilingual prompting methods handles non-English queries by utilizing English translations or restructuring them to more closely align with LLM reasoning patterns, these works often overlook the importance of cultural context, limiting their effectiveness. To address this limitation, we propose EMCEI, a simple yet effective approach that improves LLMs' multilingual capabilities by incorporating cultural context for more accurate and appropriate responses. Specifically, EMCEI follows a two-step process that first extracts relevant cultural context from the LLM's parametric knowledge via prompting. Then, EMCEI employs an LLM-as-Judge mechanism to select the most appropriate response by balancing cultural relevance and reasoning ability. Experiments on diverse multilingual benchmarks show that EMCEI outperforms existing baselines, demonstrating its effectiveness in handling multilingual queries with LLMs.
Related papers
- Balanced Multi-Factor In-Context Learning for Multilingual Large Language Models [53.38288894305388]
Multilingual large language models (MLLMs) are able to leverage in-context learning (ICL) to achieve high performance by leveraging cross-lingual knowledge transfer without parameter updates.<n>Three key factors influence multilingual ICL: (1) semantic similarity, (2) linguistic alignment, and (3) language-specific performance.<n>We propose balanced multi-factor ICL (textbfBMF-ICL), a method that quantifies and optimally balances these factors for improved example selection.
arXiv Detail & Related papers (2025-02-17T06:56:33Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - LLM for Everyone: Representing the Underrepresented in Large Language Models [21.07409393578553]
This thesis aims to bridge the gap in NLP research and development by focusing on underrepresented languages.
A comprehensive evaluation of large language models (LLMs) is conducted to assess their capabilities in these languages.
The proposed solutions cover cross-lingual continual instruction tuning, retrieval-based cross-lingual in-context learning, and in-context query alignment.
arXiv Detail & Related papers (2024-09-20T20:53:22Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, i.e., be crosslingual?
This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Teaching LLMs to Abstain across Languages via Multilingual Feedback [40.84205285309612]
We show that multilingual feedback helps identify knowledge gaps across diverse languages, cultures, and communities.<n>Extensive experiments demonstrate that our multilingual feedback approach outperforms various strong baselines.<n>Further analysis reveals that multilingual feedback is both an effective and a more equitable abstain strategy to serve diverse language speakers.
arXiv Detail & Related papers (2024-06-22T21:59:12Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
Reasoning capabilities are crucial for Large Language Models (LLMs)
We propose MindMerger, which merges LLMs with the external language understanding capabilities from multilingual models.
MindMerger consistently outperforms all baselines, especially in low-resource languages.
arXiv Detail & Related papers (2024-05-27T17:41:54Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
Large language models (LLMs) have demonstrated multilingual capabilities; yet, they are mostly English-centric due to imbalanced training corpora.
This work extends the evaluation from NLP tasks to real user queries.
For culture-related tasks that need deep language understanding, prompting in the native language tends to be more promising.
arXiv Detail & Related papers (2024-03-15T12:47:39Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
Open-source large language models (LLMs) have gained significant strength across diverse fields.
In this work, we construct an open-source multilingual supervised fine-tuning dataset.
The resulting UltraLink dataset comprises approximately 1 million samples across five languages.
arXiv Detail & Related papers (2024-02-07T05:05:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.