Enhancing Reasoning with Collaboration and Memory
- URL: http://arxiv.org/abs/2503.05944v1
- Date: Fri, 07 Mar 2025 21:19:21 GMT
- Title: Enhancing Reasoning with Collaboration and Memory
- Authors: Julie Michelman, Nasrin Baratalipour, Matthew Abueg,
- Abstract summary: We envision a continuous collaborative learning system where groups of LLM agents work together to solve reasoning problems.<n>This work establishes the foundations for such a system by studying the interoperability of chain-of-thought reasoning styles.<n>We generate frozen and continuously learned memory banks of exemplars and pair them with fixed, random, and similarity-based retrieval mechanisms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We envision a continuous collaborative learning system where groups of LLM agents work together to solve reasoning problems, drawing on memory they collectively build to improve performance as they gain experience. This work establishes the foundations for such a system by studying the interoperability of chain-of-thought reasoning styles, multi-agent collaboration, and memory banks. Extending beyond the identical agents of self-consistency, we introduce varied-context agents with diverse exemplars and a summarizer agent in place of voting. We generate frozen and continuously learned memory banks of exemplars and pair them with fixed, random, and similarity-based retrieval mechanisms. Our systematic study reveals where various methods contribute to reasoning performance of two LLMs on three grounded reasoning tasks, showing that random exemplar selection can often beat more principled approaches, and in some tasks, inclusion of any exemplars serves only to distract both weak and strong models.
Related papers
- MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement.
We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing.
We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance.
arXiv Detail & Related papers (2025-03-19T14:46:53Z) - Unraveling the Mechanics of Learning-Based Demonstration Selection for In-Context Learning [43.356895599336504]
We analyze the working mechanisms of the learning-based demonstration selection methods.
We empirically identify two important factors related to similarity measurement.
We introduce two effective yet simplified exemplar selection methods catering to task-agnostic and task-specific demands.
arXiv Detail & Related papers (2024-06-14T03:34:02Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities.
LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems.
The key component to support agent-environment interactions is the memory of the agents.
arXiv Detail & Related papers (2024-04-21T01:49:46Z) - Memory Sharing for Large Language Model based Agents [43.53494041932615]
This paper introduces the Memory Sharing, a framework which integrates the real-time memory filter, storage and retrieval to enhance the In-Context Learning process.
The experimental results demonstrate that the MS framework significantly improves the agents' performance in addressing open-ended questions.
arXiv Detail & Related papers (2024-04-15T17:57:30Z) - Causal Coordinated Concurrent Reinforcement Learning [8.654978787096807]
We propose a novel algorithmic framework for data sharing and coordinated exploration for the purpose of learning more data-efficient and better performing policies under a concurrent reinforcement learning setting.
Our algorithm leverages a causal inference algorithm in the form of Additive Noise Model - Mixture Model (ANM-MM) in extracting model parameters governing individual differentials via independence enforcement.
We propose a new data sharing scheme based on a similarity measure of the extracted model parameters and demonstrate superior learning speeds on a set of autoregressive, pendulum and cart-pole swing-up tasks.
arXiv Detail & Related papers (2024-01-31T17:20:28Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z) - Reward Machines for Cooperative Multi-Agent Reinforcement Learning [30.84689303706561]
In cooperative multi-agent reinforcement learning, a collection of agents learns to interact in a shared environment to achieve a common goal.
We propose the use of reward machines (RM) -- Mealy machines used as structured representations of reward functions -- to encode the team's task.
The proposed novel interpretation of RMs in the multi-agent setting explicitly encodes required teammate interdependencies, allowing the team-level task to be decomposed into sub-tasks for individual agents.
arXiv Detail & Related papers (2020-07-03T23:08:14Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.