Causal Coordinated Concurrent Reinforcement Learning
- URL: http://arxiv.org/abs/2401.18012v1
- Date: Wed, 31 Jan 2024 17:20:28 GMT
- Title: Causal Coordinated Concurrent Reinforcement Learning
- Authors: Tim Tse, Isaac Chan, Zhitang Chen
- Abstract summary: We propose a novel algorithmic framework for data sharing and coordinated exploration for the purpose of learning more data-efficient and better performing policies under a concurrent reinforcement learning setting.
Our algorithm leverages a causal inference algorithm in the form of Additive Noise Model - Mixture Model (ANM-MM) in extracting model parameters governing individual differentials via independence enforcement.
We propose a new data sharing scheme based on a similarity measure of the extracted model parameters and demonstrate superior learning speeds on a set of autoregressive, pendulum and cart-pole swing-up tasks.
- Score: 8.654978787096807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel algorithmic framework for data sharing and
coordinated exploration for the purpose of learning more data-efficient and
better performing policies under a concurrent reinforcement learning (CRL)
setting. In contrast to other work which make the assumption that all agents
act under identical environments, we relax this restriction and instead
consider the formulation where each agent acts within an environment which
shares a global structure but also exhibits individual variations. Our
algorithm leverages a causal inference algorithm in the form of Additive Noise
Model - Mixture Model (ANM-MM) in extracting model parameters governing
individual differentials via independence enforcement. We propose a new data
sharing scheme based on a similarity measure of the extracted model parameters
and demonstrate superior learning speeds on a set of autoregressive, pendulum
and cart-pole swing-up tasks and finally, we show the effectiveness of diverse
action selection between common agents under a sparse reward setting. To the
best of our knowledge, this is the first work in considering non-identical
environments in CRL and one of the few works which seek to integrate causal
inference with reinforcement learning (RL).
Related papers
- Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
We propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Distributed Continual Learning [12.18012293738896]
We introduce a mathematical framework capturing the essential aspects of distributed continual learning.
We identify three modes of information exchange: data instances, full model parameters, and modular (partial) model parameters.
Our findings reveal three key insights: sharing parameters is more efficient than sharing data as tasks become more complex.
arXiv Detail & Related papers (2024-05-23T21:24:26Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction [1.6954753390775528]
We present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores.
Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward.
arXiv Detail & Related papers (2024-05-21T18:45:18Z) - Distributed Personalized Empirical Risk Minimization [19.087524494290676]
This paper advocates a new paradigm Personalized Empirical Risk Minimization (PERM) to facilitate learning from heterogeneous data sources.
We propose a distributed algorithm that replaces the standard model averaging with model shuffling to simultaneously optimize PERM objectives for all devices.
arXiv Detail & Related papers (2023-10-26T20:07:33Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
We study the problem of federated multi-arm contextual bandits with unknown contexts.
We propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions.
arXiv Detail & Related papers (2023-03-29T22:06:24Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
Federated learning has been recently proposed for distributed model training at the edge.
This paper presents a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework.
We derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses.
arXiv Detail & Related papers (2022-05-22T16:37:53Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.