HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading
- URL: http://arxiv.org/abs/2503.05990v1
- Date: Sat, 08 Mar 2025 00:05:39 GMT
- Title: HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading
- Authors: Qi Zhang, Shunan Zhang, Ziqi Zhao, Kun Wang, Jun Xu, Jianqi Sun,
- Abstract summary: vertebral compression fractures (VCFs) are prevalent in the elderly population.<n>This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention.<n>Deep learning methods have shown promise in aiding VCFs screening, but they often lack interpretability and sufficient sensitivity.<n>We introduce a novel vertebra synthesis-height loss quantification-VCFs grading framework.
- Score: 13.980143394375533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Osteoporotic vertebral compression fractures (VCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, clinical data indicate that many VCFs exhibit irregular compression, complicating accurate diagnosis. While deep learning methods have shown promise in aiding VCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-VCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and our private dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic sensitivity in clinical settings and assisting in surgical decision-making. Our code is available: https://github.com/zhibaishouheilab/HealthiVert-GAN.
Related papers
- Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae.
It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression.
We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published model.
arXiv Detail & Related papers (2022-06-27T10:31:03Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Interpretable Vertebral Fracture Quantification via Anchor-Free
Landmarks Localization [0.04925906256430176]
Vertebral body compression fractures are early signs of osteoporosis.
We propose a new two-step algorithm to localize the vertebral column in 3D CT images.
We then detect individual vertebrae and quantify fractures in 2D simultaneously.
arXiv Detail & Related papers (2022-04-14T08:31:25Z) - Automatic Vertebra Localization and Identification in CT by Spine
Rectification and Anatomically-constrained Optimization [23.84364494308767]
This paper proposes a robust and accurate method that exploits the anatomical knowledge of the spine to facilitate vertebra localization and identification.
A key point localization model is trained to produce activation maps of vertebra centers.
They are then re-sampled along the spine centerline to produce spine-rectified activation maps, which are further aggregated into 1-D activation signals.
An anatomically-constrained optimization module is introduced to jointly search for the optimal vertebra centers under a soft constraint that regulates the distance between vertebrae and a hard constraint on the consecutive vertebra indices.
arXiv Detail & Related papers (2020-12-14T21:26:48Z) - Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture
Detection [58.984536305767996]
We propose a representation learning-inspired approach for automated vertebral fracture detection.
We present a novel Grading Loss for learning representations that respect Genant's fracture grading scheme.
On a publicly available spine dataset, the proposed loss function achieves a fracture detection F1 score of 81.5%.
arXiv Detail & Related papers (2020-08-18T10:03:45Z) - Keypoints Localization for Joint Vertebra Detection and Fracture
Severity Quantification [0.04925906256430176]
Vertebral body compression fractures are reliable early signs of osteoporosis.
We propose a new two-step algorithm to localize the vertebral column in 3D CT images.
We simultaneously detect individual vertebrae and quantify fractures in 2D.
arXiv Detail & Related papers (2020-05-25T08:05:27Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.