Automatic Vertebra Localization and Identification in CT by Spine
Rectification and Anatomically-constrained Optimization
- URL: http://arxiv.org/abs/2012.07947v1
- Date: Mon, 14 Dec 2020 21:26:48 GMT
- Title: Automatic Vertebra Localization and Identification in CT by Spine
Rectification and Anatomically-constrained Optimization
- Authors: Fakai Wang, Kang Zheng, Le Lu, Jing Xiao, Min Wu and Shun Miao
- Abstract summary: This paper proposes a robust and accurate method that exploits the anatomical knowledge of the spine to facilitate vertebra localization and identification.
A key point localization model is trained to produce activation maps of vertebra centers.
They are then re-sampled along the spine centerline to produce spine-rectified activation maps, which are further aggregated into 1-D activation signals.
An anatomically-constrained optimization module is introduced to jointly search for the optimal vertebra centers under a soft constraint that regulates the distance between vertebrae and a hard constraint on the consecutive vertebra indices.
- Score: 23.84364494308767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate vertebra localization and identification are required in many
clinical applications of spine disorder diagnosis and surgery planning.
However, significant challenges are posed in this task by highly varying
pathologies (such as vertebral compression fracture, scoliosis, and vertebral
fixation) and imaging conditions (such as limited field of view and metal
streak artifacts). This paper proposes a robust and accurate method that
effectively exploits the anatomical knowledge of the spine to facilitate
vertebra localization and identification. A key point localization model is
trained to produce activation maps of vertebra centers. They are then
re-sampled along the spine centerline to produce spine-rectified activation
maps, which are further aggregated into 1-D activation signals. Following this,
an anatomically-constrained optimization module is introduced to jointly search
for the optimal vertebra centers under a soft constraint that regulates the
distance between vertebrae and a hard constraint on the consecutive vertebra
indices. When being evaluated on a major public benchmark of 302 highly
pathological CT images, the proposed method reports the state of the art
identification (id.) rate of 97.4%, and outperforms the best competing method
of 94.7% id. rate by reducing the relative id. error rate by half.
Related papers
- Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet [2.8730926763860687]
We propose a modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine.
Our method achieves an impressive accuracy of 99.5% by incorporating novel masking logic.
arXiv Detail & Related papers (2024-04-28T19:35:00Z) - SpineCLUE: Automatic Vertebrae Identification Using Contrastive Learning
and Uncertainty Estimation [12.427024671144869]
Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease.
Existing methods at the spine-level are unable to meet this challenge.
We propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level.
arXiv Detail & Related papers (2024-01-14T12:02:39Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Interpretable Vertebral Fracture Quantification via Anchor-Free
Landmarks Localization [0.04925906256430176]
Vertebral body compression fractures are early signs of osteoporosis.
We propose a new two-step algorithm to localize the vertebral column in 3D CT images.
We then detect individual vertebrae and quantify fractures in 2D simultaneously.
arXiv Detail & Related papers (2022-04-14T08:31:25Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
We propose a stacked hourglass network with multi-level attention mechanism to jointly learn intervertebral disc position and their skeleton structure.
The proposed deep learning model takes into account the strength of semantic segmentation and pose estimation technique to handle the missing area and false positive detection.
arXiv Detail & Related papers (2021-08-14T14:53:27Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z) - Keypoints Localization for Joint Vertebra Detection and Fracture
Severity Quantification [0.04925906256430176]
Vertebral body compression fractures are reliable early signs of osteoporosis.
We propose a new two-step algorithm to localize the vertebral column in 3D CT images.
We simultaneously detect individual vertebrae and quantify fractures in 2D.
arXiv Detail & Related papers (2020-05-25T08:05:27Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
We propose a novel vertebra-focused landmark detection method.
Our model first localizes the vertebra centers, based on which it then traces the four corner landmarks of the vertebra through the learned corner offset.
Results demonstrate the merits of our method in both Cobb angle measurement and landmark detection on low-contrast and ambiguous X-ray images.
arXiv Detail & Related papers (2020-01-09T19:17:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.