論文の概要: Towards Conversational AI for Disease Management
- arxiv url: http://arxiv.org/abs/2503.06074v1
- Date: Sat, 08 Mar 2025 05:48:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:53:18.788905
- Title: Towards Conversational AI for Disease Management
- Title(参考訳): 疾患管理のための会話型AIを目指して
- Authors: Anil Palepu, Valentin Liévin, Wei-Hung Weng, Khaled Saab, David Stutz, Yong Cheng, Kavita Kulkarni, S. Sara Mahdavi, Joëlle Barral, Dale R. Webster, Katherine Chou, Avinatan Hassidim, Yossi Matias, James Manyika, Ryutaro Tanno, Vivek Natarajan, Adam Rodman, Tao Tu, Alan Karthikesalingam, Mike Schaekermann,
- Abstract要約: Articulate Medical Intelligence Explorer (AMIE) は、臨床管理と対話のために最適化されたエージェントシステムである。
AMIEは、専門医が評価する管理的推論において、PCPに非優位である。
AMIEの評価における強いパフォーマンスは、疾患管理のツールとしての対話型AIへの重要な一歩である。
- 参考スコア(独自算出の注目度): 29.189384095061722
- License:
- Abstract: While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic system optimised for clinical management and dialogue, incorporating reasoning over the evolution of disease and multiple patient visit encounters, response to therapy, and professional competence in medication prescription. To ground its reasoning in authoritative clinical knowledge, AMIE leverages Gemini's long-context capabilities, combining in-context retrieval with structured reasoning to align its output with relevant and up-to-date clinical practice guidelines and drug formularies. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) study, AMIE was compared to 21 primary care physicians (PCPs) across 100 multi-visit case scenarios designed to reflect UK NICE Guidance and BMJ Best Practice guidelines. AMIE was non-inferior to PCPs in management reasoning as assessed by specialist physicians and scored better in both preciseness of treatments and investigations, and in its alignment with and grounding of management plans in clinical guidelines. To benchmark medication reasoning, we developed RxQA, a multiple-choice question benchmark derived from two national drug formularies (US, UK) and validated by board-certified pharmacists. While AMIE and PCPs both benefited from the ability to access external drug information, AMIE outperformed PCPs on higher difficulty questions. While further research would be needed before real-world translation, AMIE's strong performance across evaluations marks a significant step towards conversational AI as a tool in disease management.
- Abstract(参考訳): 大きな言語モデル(LLM)は、診断対話において有望であるが、病気の進行、治療反応、安全な医薬品処方など、効果的な管理推論の能力は、まだ探索されていない。
臨床管理と対話に最適化された新しいLSMベースのエージェントシステムにより,先程実証されたAMIE(Articulate Medical Intelligence Explorer)の診断能力を進歩させ,疾患の進展と複数の患者との出会い,治療に対する反応,および処方薬の専門的能力に関する推論を取り入れた。
AMIEはその推論を権威的な臨床知識に根ざすために、ジェミニの長期コンテキスト能力を活用し、コンテキスト内検索と構造化推論を組み合わせることで、そのアウトプットを関連性のある最新の臨床実践ガイドラインと薬品の定式化と整合させる。
ランダムで盲目な仮想目的構造検査(OSCE)研究において、AMIEは、英国NICEガイダンスとBMJベストプラクティスガイドラインを反映した100の多視点ケースシナリオにおいて、21のプライマリケア医師(PCP)と比較された。
AMIEは, 専門医が評価する管理的理由付けにおいて, PCPの非優位であり, 治療と調査の正確性, 臨床ガイドラインにおける管理計画の整合性, 根拠性に優れていた。
RxQA(RxQA)を開発した。これは2つの国産医薬品公式(US, UK)から派生し,基板認証薬理学者によって検証された多票質問ベンチマークである。
AMIEとPCPはどちらも外部の薬物情報にアクセスする能力から恩恵を受けたが、AMIEはより高い難問でPCPよりも優れていた。
実際の翻訳にはさらなる研究が必要だが、AMIEの評価における強力なパフォーマンスは、疾患管理のツールとしての会話型AIへの大きな一歩である。
関連論文リスト
- Natural Language-Assisted Multi-modal Medication Recommendation [97.07805345563348]
NLA-MMR(Natural Language-Assisted Multi-modal Medication Recommendation)を紹介する。
NLA-MMRは、患者視点から知識を学習し、医薬視点を共同で学習するために設計されたマルチモーダルアライメントフレームワークである。
本稿では,プレトレーニング言語モデル(PLM)を用いて,患者や医薬品に関するドメイン内知識を抽出する。
論文 参考訳(メタデータ) (2025-01-13T09:51:50Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
臨床ワークフローの5つの重要な段階をカバーする12,163の臨床症例のデータセットであるMedChainを提示する。
フィードバック機構とMCase-RAGモジュールを統合したAIシステムであるMedChain-Agentも提案する。
論文 参考訳(メタデータ) (2024-12-02T15:25:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Exploring Large Language Models for Specialist-level Oncology Care [17.34069859182619]
乳腺腫瘍治療のサブスペシャリスト領域における対話型診断AIシステムAMIEの性能について検討した。
当科では, 治療・治療・難治性症例の50種類の合成乳がんビグネットを切除した。
症例要約の質, ケア計画の安全性, 化学療法, 放射線療法, 手術, ホルモン療法の勧告など, 管理計画を評価するための詳細な臨床用ルーリックを開発した。
論文 参考訳(メタデータ) (2024-11-05T18:30:13Z) - Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment [22.983780823136925]
本研究は、医療対話モデルを改善するために、AIフィードバック(RLAIF)技術を用いた強化学習(Reinforcement Learning)について検討する。
医療におけるRLAIF研究の主な課題は、自動評価手法の限界である。
標準化された患者診査に基づく新しい評価枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-05T10:29:19Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - Towards Conversational Diagnostic AI [32.84876349808714]
本稿では,診断対話に最適化されたLarge Language Model (LLM)ベースのAIシステムであるAMIE(Articulate Medical Intelligence Explorer)を紹介する。
AMIEは、さまざまな疾患条件にまたがって学習をスケールするための自動フィードバック機構を備えた、セルフプレイベースのシミュレート環境を使用する。
AMIEの診断精度は, 専門医によると32例中28例, 患者アクターでは26例中24例で高い成績を示した。
論文 参考訳(メタデータ) (2024-01-11T04:25:06Z) - ABiMed: An intelligent and visual clinical decision support system for
medication reviews and polypharmacy management [3.843569766201585]
ABiMedの目的は、医薬品レビューと多薬局管理のための革新的な臨床決定支援システムを設計することである。
ABiMedは、ガイドラインの実装と、GPの電子健康記録から患者データを自動抽出し、薬剤師に転送すること、および視覚分析を用いてコンテキスト化された薬物知識を視覚的に提示すること、の2つのアプローチを関連付けている。
論文 参考訳(メタデータ) (2023-12-13T11:06:45Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。