論文の概要: Feature Fusion Attention Network with CycleGAN for Image Dehazing, De-Snowing and De-Raining
- arxiv url: http://arxiv.org/abs/2503.06107v1
- Date: Sat, 08 Mar 2025 07:18:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:59.970083
- Title: Feature Fusion Attention Network with CycleGAN for Image Dehazing, De-Snowing and De-Raining
- Title(参考訳): 画像復調・解離・復号化のためのCycleGANを用いた特徴核融合注意ネットワーク
- Authors: Akshat Jain,
- Abstract要約: 本稿では,Feature Fusion Attention (FFA) ネットワークとCycleGANアーキテクチャを組み合わせた画像デハージング手法を提案する。
本手法は,教師あり学習技術と教師なし学習技術の両方を活用し,重要な画像情報を保持しつつ,画像からヘイズを効果的に除去する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel approach to image dehazing by combining Feature Fusion Attention (FFA) networks with CycleGAN architecture. Our method leverages both supervised and unsupervised learning techniques to effectively remove haze from images while preserving crucial image details. The proposed hybrid architecture demonstrates significant improvements in image quality metrics, achieving superior PSNR and SSIM scores compared to traditional dehazing methods. Through extensive experimentation on the RESIDE and DenseHaze CVPR 2019 dataset, we show that our approach effectively handles both synthetic and real-world hazy images. CycleGAN handles the unpaired nature of hazy and clean images effectively, enabling the model to learn mappings even without paired data.
- Abstract(参考訳): 本稿では,Feature Fusion Attention (FFA) ネットワークとCycleGANアーキテクチャを組み合わせた画像デハージング手法を提案する。
本手法は,教師あり学習技術と教師なし学習技術の両方を活用し,重要な画像情報を保持しつつ,画像からヘイズを効果的に除去する。
提案したハイブリッドアーキテクチャは、画像品質の指標を大幅に改善し、従来のデハジング法に比べて優れたPSNRとSSIMスコアを実現している。
RESIDEとDenseHaze CVPR 2019データセットの広範な実験により、我々のアプローチは合成画像と実世界のハズイ画像の両方を効果的に処理できることが示されている。
CycleGANは、ぼんやりした画像ときれいな画像を効果的に扱えるので、ペアのデータを使わずにマッピングを学習できる。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Restoring Vision in Hazy Weather with Hierarchical Contrastive Learning [53.85892601302974]
階層的コントラストデハージング(HCD)という,効果的な画像デハージング手法を提案する。
HCDは階層的脱ハージングネットワーク(HDN)と新しい階層的コントラスト損失(HCL)から構成される
論文 参考訳(メタデータ) (2022-12-22T03:57:06Z) - Dual-Scale Single Image Dehazing Via Neural Augmentation [29.019279446792623]
モデルベースとデータ駆動のアプローチを組み合わせることで,新しい単一画像デハージングアルゴリズムを導入する。
その結果,提案アルゴリズムは実世界および合成ヘイズ画像からヘイズをうまく除去できることが示唆された。
論文 参考訳(メタデータ) (2022-09-13T11:56:03Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
本稿では,CycleGANに基づくディープネットワークの監視手法について述べる。
我々は,より効果的なトレーニングにつながるCycleGANのトレーニングに新たな損失を導入し,高品質な再構築を実現した。
提案手法は, 脱落, 脱落, 脱落といった様々な修復作業に効果的に適用できることを実証する。
論文 参考訳(メタデータ) (2022-04-23T01:30:47Z) - From Synthetic to Real: Image Dehazing Collaborating with Unlabeled Real
Data [58.50411487497146]
ラベルのない実データと協調する新しい画像デハージングフレームワークを提案する。
まず,特徴表現を3つの成分マップに切り離す不整合画像デハージングネットワーク(DID-Net)を開発する。
そして、無ラベルの実データと協調して単一画像のデハージングを促進するために、不整合平均教師ネットワーク(DMT-Net)を用いる。
論文 参考訳(メタデータ) (2021-08-06T04:00:28Z) - Contrastive Learning for Compact Single Image Dehazing [41.83007400559068]
コントラスト学習に基づいて構築された新しいコントラスト正規化(CR)を提案し、ヘイズ画像とクリア画像の情報の両方をネガティブかつポジティブなサンプルとして活用する。
CRは、復元された画像が透明な画像に近づき、表現空間のぼやけた画像から遠くへ押し出されることを保証する。
性能とメモリストレージのトレードオフを考慮すると、オートエンコーダのようなフレームワークに基づくコンパクトなデハージングネットワークを開発する。
論文 参考訳(メタデータ) (2021-04-19T14:56:21Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
まず,画像生成ネットワークの監視に新たな知覚損失を適用したIACycleGAN(Identity-Aware CycleGAN)モデルを提案する。
眼や鼻などの重要な顔領域の合成により多くの注意を払うことで、フォトエッチング合成におけるサイクガンを改善する。
IACycleGANによる画像の合成を反復的に行う合成モデルと認識モデルとの相互最適化手法を開発した。
論文 参考訳(メタデータ) (2021-03-30T01:30:08Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
画像デハージングのためのFusion-Discriminator (FD-GAN) を用いた完全エンドツーエンドのジェネレータネットワークを提案する。
我々のモデルは、より自然でリアルなデハズド画像を生成することができ、色歪みは少なく、アーティファクトも少ない。
実験により, 提案手法は, 公開合成データセットと実世界の画像の両方において, 最先端の性能に達することが示された。
論文 参考訳(メタデータ) (2020-01-20T04:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。