System 0/1/2/3: Quad-process theory for multi-timescale embodied collective cognitive systems
- URL: http://arxiv.org/abs/2503.06138v2
- Date: Thu, 13 Mar 2025 23:45:53 GMT
- Title: System 0/1/2/3: Quad-process theory for multi-timescale embodied collective cognitive systems
- Authors: Tadahiro Taniguchi, Yasushi Hirai, Masahiro Suzuki, Shingo Murata, Takato Horii, Kazutoshi Tanaka,
- Abstract summary: This paper introduces the System 0/1/2/3 framework as an extension of dual-process theory, employing a quad-process model of cognition.<n>We contextualize this model within Bergson's philosophy by adopting multi-scale time theory to unify the diverse temporal dynamics of cognition.
- Score: 12.195073658696618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the System 0/1/2/3 framework as an extension of dual-process theory, employing a quad-process model of cognition. Expanding upon System 1 (fast, intuitive thinking) and System 2 (slow, deliberative thinking), we incorporate System 0, which represents pre-cognitive embodied processes, and System 3, which encompasses collective intelligence and symbol emergence. We contextualize this model within Bergson's philosophy by adopting multi-scale time theory to unify the diverse temporal dynamics of cognition. System 0 emphasizes morphological computation and passive dynamics, illustrating how physical embodiment enables adaptive behavior without explicit neural processing. Systems 1 and 2 are explained from a constructive perspective, incorporating neurodynamical and AI viewpoints. In System 3, we introduce collective predictive coding to explain how societal-level adaptation and symbol emergence operate over extended timescales. This comprehensive framework ranges from rapid embodied reactions to slow-evolving collective intelligence, offering a unified perspective on cognition across multiple timescales, levels of abstraction, and forms of human intelligence. The System 0/1/2/3 model provides a novel theoretical foundation for understanding the interplay between adaptive and cognitive processes, thereby opening new avenues for research in cognitive science, AI, robotics, and collective intelligence.
Related papers
- The brain versus AI: World-model-based versatile circuit computation underlying diverse functions in the neocortex and cerebellum [0.0]
We identify similarities and convergent evolution in the brain and AI.<n>We propose a new theory that integrates established neuroscience theories.<n>Our systematic approach, insights, and theory promise groundbreaking advances in understanding the brain.
arXiv Detail & Related papers (2024-11-25T04:05:43Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - The dynamics of belief: continuously monitoring and visualising complex
systems [0.0]
Rise of AI in human contexts places new demands on automated systems to be transparent and explainable.
We develop a theoretical framework for thinking about digital systems in complex human contexts.
arXiv Detail & Related papers (2022-08-11T11:51:35Z) - Improving Coherence and Consistency in Neural Sequence Models with
Dual-System, Neuro-Symbolic Reasoning [49.6928533575956]
We use neural inference to mediate between the neural System 1 and the logical System 2.
Results in robust story generation and grounded instruction-following show that this approach can increase the coherence and accuracy of neurally-based generations.
arXiv Detail & Related papers (2021-07-06T17:59:49Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - The Evolution of Concept-Acquisition based on Developmental Psychology [4.416484585765028]
A conceptual system with rich connotation is key to improving the performance of knowledge-based artificial intelligence systems.
Finding a new method to represent concepts and construct a conceptual system will greatly improve the performance of many intelligent systems.
Developmental psychology carefully observes the process of concept acquisition in humans at the behavioral level.
arXiv Detail & Related papers (2020-11-26T01:57:24Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - Controlling Recurrent Neural Networks by Conceptors [0.5439020425818999]
I propose a mechanism of neurodynamical organization, called conceptors, which unites nonlinear dynamics with basic principles of conceptual abstraction and logic.
It becomes possible to learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of dynamical patterns within a single neural system.
arXiv Detail & Related papers (2014-03-13T18:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.