SRM-Hair: Single Image Head Mesh Reconstruction via 3D Morphable Hair
- URL: http://arxiv.org/abs/2503.06154v1
- Date: Sat, 08 Mar 2025 10:37:46 GMT
- Title: SRM-Hair: Single Image Head Mesh Reconstruction via 3D Morphable Hair
- Authors: Zidu Wang, Jiankuo Zhao, Miao Xu, Xiangyu Zhu, Zhen Lei,
- Abstract summary: This paper introduces a novel method, Semantic-consistent Ray Modeling of Hair (SRM-Hair), for making 3D hair morphable and controlled by coefficients.<n>We collect a dataset of over 250 high-fidelity real hair scans paired with 3D face data to serve as a prior for the 3D morphable hair.<n>SRM-Hair produces an independent hair mesh, applications in virtual avatar creation, realistic animation, and high-fidelity hair rendering.
- Score: 34.11388822363024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D Morphable Models (3DMMs) have played a pivotal role as a fundamental representation or initialization for 3D avatar animation and reconstruction. However, extending 3DMMs to hair remains challenging due to the difficulty of enforcing vertex-level consistent semantic meaning across hair shapes. This paper introduces a novel method, Semantic-consistent Ray Modeling of Hair (SRM-Hair), for making 3D hair morphable and controlled by coefficients. The key contribution lies in semantic-consistent ray modeling, which extracts ordered hair surface vertices and exhibits notable properties such as additivity for hairstyle fusion, adaptability, flipping, and thickness modification. We collect a dataset of over 250 high-fidelity real hair scans paired with 3D face data to serve as a prior for the 3D morphable hair. Based on this, SRM-Hair can reconstruct a hair mesh combined with a 3D head from a single image. Note that SRM-Hair produces an independent hair mesh, facilitating applications in virtual avatar creation, realistic animation, and high-fidelity hair rendering. Both quantitative and qualitative experiments demonstrate that SRM-Hair achieves state-of-the-art performance in 3D mesh reconstruction. Our project is available at https://github.com/wang-zidu/SRM-Hair
Related papers
- Generating Editable Head Avatars with 3D Gaussian GANs [57.51487984425395]
Traditional 3D-aware generative adversarial networks (GANs) achieve photorealistic and view-consistent 3D head synthesis.<n>We propose a novel approach that enhances the editability and animation control of 3D head avatars by incorporating 3D Gaussian Splatting (3DGS) as an explicit 3D representation.<n>Our approach delivers high-quality 3D-aware synthesis with state-of-the-art controllability.
arXiv Detail & Related papers (2024-12-26T10:10:03Z) - StrandHead: Text to Strand-Disentangled 3D Head Avatars Using Hair Geometric Priors [33.00657081996672]
StrandHead is a novel text to 3D head avatar generation method capable of generating disentangled 3D hair with strand representation.<n>We show that StrandHead achieves the state-of-the-art reality and diversity of generated 3D head and hair.<n>The generated 3D hair can also be easily implemented in the Unreal Engine for physical simulation and other applications.
arXiv Detail & Related papers (2024-12-16T09:17:36Z) - Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
We introduce a new hair modeling method that uses a dual representation of classical hair strands and 3D Gaussians.
In contrast to recent approaches that leverage unstructured Gaussians to model human avatars, our method reconstructs the hair using 3D polylines, or strands.
Our method, named Gaussian Haircut, is evaluated on synthetic and real scenes and demonstrates state-of-the-art performance in the task of strand-based hair reconstruction.
arXiv Detail & Related papers (2024-09-23T07:49:46Z) - MeGA: Hybrid Mesh-Gaussian Head Avatar for High-Fidelity Rendering and Head Editing [34.31657241047574]
We propose a Hybrid Mesh-Gaussian Head Avatar (MeGA) that models different head components with more suitable representations.
MeGA generates higher-fidelity renderings for the whole head and naturally supports more downstream tasks.
Experiments on the NeRSemble dataset demonstrate the effectiveness of our designs.
arXiv Detail & Related papers (2024-04-29T18:10:12Z) - MonoHair: High-Fidelity Hair Modeling from a Monocular Video [40.27026803872373]
MonoHair is a generic framework to achieve high-fidelity hair reconstruction from a monocular video.
Our approach bifurcates the hair modeling process into two main stages: precise exterior reconstruction and interior structure inference.
Our experiments demonstrate that our method exhibits robustness across diverse hairstyles and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-03-27T08:48:47Z) - PSAvatar: A Point-based Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting [17.78639236586134]
PSAvatar is a novel framework for animatable head avatar creation.
It employs 3D Gaussian for fine detail representation and high fidelity rendering.
We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time.
arXiv Detail & Related papers (2024-01-23T16:40:47Z) - HAAR: Text-Conditioned Generative Model of 3D Strand-based Human
Hairstyles [85.12672855502517]
We present HAAR, a new strand-based generative model for 3D human hairstyles.
Based on textual inputs, HAAR produces 3D hairstyles that could be used as production-level assets in modern computer graphics engines.
arXiv Detail & Related papers (2023-12-18T19:19:32Z) - Text-Guided Generation and Editing of Compositional 3D Avatars [59.584042376006316]
Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description.
Existing methods either lack realism, produce unrealistic shapes, or do not support editing.
arXiv Detail & Related papers (2023-09-13T17:59:56Z) - HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for
Single-View 3D Hair Modeling [55.57803336895614]
We tackle the challenging problem of learning-based single-view 3D hair modeling.
We first propose a novel intermediate representation, termed as HairStep, which consists of a strand map and a depth map.
It is found that HairStep not only provides sufficient information for accurate 3D hair modeling, but also is feasible to be inferred from real images.
arXiv Detail & Related papers (2023-03-05T15:28:13Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.