Object-Centric World Model for Language-Guided Manipulation
- URL: http://arxiv.org/abs/2503.06170v2
- Date: Wed, 12 Mar 2025 13:52:50 GMT
- Title: Object-Centric World Model for Language-Guided Manipulation
- Authors: Youngjoon Jeong, Junha Chun, Soonwoo Cha, Taesup Kim,
- Abstract summary: A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics.<n>We propose a world model leveraging object-centric representation space using slot attention, guided by language instructions.<n>Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions.
- Score: 4.008780119020479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
Related papers
- DreamVLA: A Vision-Language-Action Model Dreamed with Comprehensive World Knowledge [56.3802428957899]
We propose DreamVLA, a novel VLA framework that integrates comprehensive world knowledge forecasting to enable inverse dynamics modeling.<n>DreamVLA introduces a dynamic-region-guided world knowledge prediction, integrated with the spatial and semantic cues, which provide compact yet comprehensive representations for action planning.<n>Experiments on both real-world and simulation environments demonstrate that DreamVLA achieves 76.7% success rate on real robot tasks.
arXiv Detail & Related papers (2025-07-06T16:14:29Z) - ASMR: Augmenting Life Scenario using Large Generative Models for Robotic Action Reflection [21.75681306780917]
This paper introduces a novel framework focusing on data augmentation in robotic assistance scenarios.<n>It involves leveraging a sophisticated large language model to simulate potential conversations and environmental contexts.<n>The additionally generated data serves to refine the latest multimodal models, enabling them to more accurately determine appropriate actions.
arXiv Detail & Related papers (2025-06-16T19:58:54Z) - WorldPrediction: A Benchmark for High-level World Modeling and Long-horizon Procedural Planning [52.36434784963598]
We introduce WorldPrediction, a video-based benchmark for evaluating world modeling and procedural planning capabilities of different AI models.<n>We show that current frontier models barely achieve 57% accuracy on WorldPrediction-WM and 38% on WorldPrediction-PP whereas humans are able to solve both tasks perfectly.
arXiv Detail & Related papers (2025-06-04T18:22:40Z) - World Models for Cognitive Agents: Transforming Edge Intelligence in Future Networks [55.90051810762702]
We present a comprehensive overview of world models, highlighting their architecture, training paradigms, and applications across prediction, generation, planning, and causal reasoning.<n>We propose Wireless Dreamer, a novel world model-based reinforcement learning framework tailored for wireless edge intelligence optimization.
arXiv Detail & Related papers (2025-05-31T06:43:00Z) - RLVR-World: Training World Models with Reinforcement Learning [41.05792054442638]
We present RLVR-World, a unified framework that leverages reinforcement learning with verifiable rewards.<n>We demonstrate substantial performance gains on both language- and video-based world models across domains, including text games, web navigation, and robot manipulation.
arXiv Detail & Related papers (2025-05-20T05:02:53Z) - LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation [51.834607121538724]
We propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling.<n>We show that LaDi-WM significantly enhances policy performance by 27.9% on the LIBERO-LONG benchmark and 20% on the real-world scenario.
arXiv Detail & Related papers (2025-05-13T04:42:14Z) - Scaling Laws for Pre-training Agents and World Models [22.701210075508147]
Performance of embodied agents has been shown to improve by increasing model parameters, dataset size, and compute.<n>This paper characterizes the role of scale in these tasks more precisely.
arXiv Detail & Related papers (2024-11-07T04:57:40Z) - Making Large Language Models into World Models with Precondition and Effect Knowledge [1.8561812622368763]
We show that Large Language Models (LLMs) can be induced to perform two critical world model functions.
We validate that the precondition and effect knowledge generated by our models aligns with human understanding of world dynamics.
arXiv Detail & Related papers (2024-09-18T19:28:04Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Zero-shot Safety Prediction for Autonomous Robots with Foundation World Models [0.12499537119440243]
A world model creates a surrogate world to train a controller and predict safety violations by learning the internal dynamic model of systems.
We propose foundation world models that embed observations into meaningful and causally latent representations.
This enables the surrogate dynamics to directly predict causal future states by leveraging a training-free large language model.
arXiv Detail & Related papers (2024-03-30T20:03:49Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control.
Our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training.
arXiv Detail & Related papers (2023-07-28T21:18:02Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
Human trajectory forecasting is a key component of autonomous vehicles, social-aware robots and video-surveillance applications.
We propose a lightweight attention-based recurrent backbone that acts solely on past observed positions.
We employ a common goal module, based on a U-Net architecture, which additionally extracts semantic information to predict scene-compliant destinations.
arXiv Detail & Related papers (2022-04-25T11:12:37Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Emergent Communication with World Models [80.55287578801008]
We introduce Language World Models, a class of language-conditional generative model which interpret natural language messages.
We incorporate this "observation" into a persistent memory state, and allow the listening agent's policy to condition on it.
We show this improves effective communication and task success in 2D gridworld speaker-listener navigation tasks.
arXiv Detail & Related papers (2020-02-22T02:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.