Attention on the Wires (AttWire): A Foundation Model for Detecting Devices and Catheters in X-ray Fluoroscopic Images
- URL: http://arxiv.org/abs/2503.06190v1
- Date: Sat, 08 Mar 2025 12:20:22 GMT
- Title: Attention on the Wires (AttWire): A Foundation Model for Detecting Devices and Catheters in X-ray Fluoroscopic Images
- Authors: YingLiang Ma, Sandra Howell, Aldo Rinaldi, Tarv Dhanjal, Kawal S. Rhode,
- Abstract summary: A novel attention mechanism was designed to guide a convolution neural network (CNN) model to the areas of wires in X-ray images.<n>A lightweight foundation model can be created to detect multiple objects simultaneously with higher precision and real-time speed.
- Score: 0.4064887614767072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: Interventional devices, catheters and insertable imaging devices such as transesophageal echo (TOE) probes are routinely used in minimally invasive cardiovascular procedures. Detecting their positions and orientations in X-ray fluoroscopic images is important for many clinical applications. Method: In this paper, a novel attention mechanism was designed to guide a convolution neural network (CNN) model to the areas of wires in X-ray images, as nearly all interventional devices and catheters used in cardiovascular procedures contain wires. The attention mechanism includes multi-scale Gaussian derivative filters and a dot-product-based attention layer. By utilizing the proposed attention mechanism, a lightweight foundation model can be created to detect multiple objects simultaneously with higher precision and real-time speed. Results: The proposed model was trained and tested on a total of 12,438 X-ray images. An accuracy of 0.88 was achieved for detecting an echo probe and 0.87 for detecting an artificial valve at 58 FPS. The accuracy was measured by intersection-over-union (IoU). We also achieved a 99.8% success rate in detecting a 10-electrode catheter and a 97.8% success rate in detecting an ablation catheter. Conclusion: Our detection foundation model can simultaneously detect and identify both interventional devices and flexible catheters in real-time X-ray fluoroscopic images. Significance: The proposed model employs a novel attention mechanism to achieve high-performance object detection, making it suitable for various clinical applications and robotic-assisted surgeries. Codes are available at https://github.com/YingLiangMa/AttWire.
Related papers
- EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance [79.66329903007869]
We present EchoWorld, a motion-aware world modeling framework for probe guidance.
It encodes anatomical knowledge and motion-induced visual dynamics.
It is trained on more than one million ultrasound images from over 200 routine scans.
arXiv Detail & Related papers (2025-04-17T16:19:05Z) - Data-Centric Learning Framework for Real-Time Detection of Aiming Beam in Fluorescence Lifetime Imaging Guided Surgery [3.8261910636994925]
This study introduces a novel data-centric approach to improve real-time surgical guidance using fiber-based fluorescence lifetime imaging (FLIm)
The primary challenge arises from the complex and variable conditions encountered in the surgical environment, particularly in Transoral Robotic Surgery (TORS)
An instance segmentation model was developed using a data-centric training strategy that improves accuracy by minimizing label noise and enhancing detection robustness.
arXiv Detail & Related papers (2024-11-11T22:04:32Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Detecting the Sensing Area of A Laparoscopic Probe in Minimally Invasive
Cancer Surgery [6.0097646269887965]
In surgical oncology, it is challenging for surgeons to identify lymph nodes and completely resect cancer.
A novel tethered laparoscopic gamma detector is used to localize a preoperatively injected radiotracer.
Gamma activity visualization is challenging to present to the operator because the probe is non-imaging and it does not visibly indicate the activity on the tissue surface.
arXiv Detail & Related papers (2023-07-07T15:33:49Z) - Robust Landmark-based Stent Tracking in X-ray Fluoroscopy [10.917460255497227]
We propose an end-to-end deep learning framework for single stent tracking.
It consists of three hierarchical modules: U-Net based landmark detection, ResNet based stent proposal and feature extraction.
Experiments show that our method performs significantly better in detection compared with the state-of-the-art point-based tracking models.
arXiv Detail & Related papers (2022-07-20T14:20:03Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Operational Learning-based Boundary Estimation in Electromagnetic
Medical Imaging [0.0]
A learning-based method is proposed to estimate the boundary of the imaged object using the same electromagnetic imaging data.
The learned model is verified through independent clinical human trials by using a head imaging system with a 16-element antenna array.
arXiv Detail & Related papers (2021-08-04T12:39:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.