論文の概要: Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
- arxiv url: http://arxiv.org/abs/2503.06201v1
- Date: Sat, 08 Mar 2025 13:04:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:53:23.901671
- Title: Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
- Title(参考訳): 拡散時間ステップによる説明可能な合成画像検出
- Authors: Yixin Wu, Feiran Zhang, Tianyuan Shi, Ruicheng Yin, Zhenghua Wang, Zhenliang Gan, Xiaohua Wang, Changze Lv, Xiaoqing Zheng, Xuanjing Huang,
- Abstract要約: 近年の拡散モデルの発展により、知覚的な実画像の作成が可能になった。
拡散モデルの最近の進歩により、知覚的にリアルな画像の作成が可能となり、誤用された場合に重大なセキュリティリスクが生じる。
- 参考スコア(独自算出の注目度): 30.298198387824275
- License:
- Abstract: Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we reveal that natural and synthetic images exhibit distinct differences in the high-frequency domains of their Fourier power spectra after undergoing iterative noise perturbations through an inverse multi-step denoising process, suggesting that such noise can provide additional discriminative information for identifying synthetic images. Based on this observation, we propose a novel detection method that amplifies these differences by progressively adding noise to the original images across multiple timesteps, and train an ensemble of classifiers on these noised images. To enhance human comprehension, we introduce an explanation generation and refinement module to identify flaws located in AI-generated images. Additionally, we construct two new datasets, GenHard and GenExplain, derived from the GenImage benchmark, providing detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and harder samples, increasing a minimal of 2.51% and 3.46% compared to baselines. Furthermore, our method also generalizes effectively to images generated by other diffusion models. Our code and datasets will be made publicly available.
- Abstract(参考訳): 拡散モデルの最近の進歩により、知覚的にリアルな画像の作成が可能となり、誤用された場合に重大なセキュリティリスクが生じる。
本研究では, 自然画像と合成画像は, 逆多段復調法により繰り返し雑音の摂動を受けた後, フーリエパワースペクトルの高周波領域に相違があることを明らかにし, 合成画像の識別に新たな識別情報を与える可能性が示唆された。
本研究は,複数の時間経過で原画像にノイズを段階的に付加することにより,これらの差分を増幅する新しい検出法を提案し,これらの雑音画像に対して分類器のアンサンブルを訓練する。
人間の理解を深めるために、AI生成画像の欠陥を特定するための説明生成と改良モジュールを導入する。
さらに、GenImageベンチマークから得られた2つの新しいデータセット、GenHardとGenExplainを構築し、偽画像に対してより困難で高品質な合理的な検出サンプルを提供する。
その結果, 本手法は, 標準試料および硬質試料に対して98.91%, 95.89%の精度で最先端性能を達成し, ベースラインに比べて2.51%, 3.46%の最小値が得られた。
さらに,本手法は,他の拡散モデルにより生成された画像に対しても効果的に一般化する。
コードとデータセットは公開されます。
関連論文リスト
- DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
DiffDoctorは2段階のパイプラインで、画像拡散モデルがより少ないアーティファクトを生成するのを支援する。
我々は100万以上の欠陥のある合成画像のデータセットを収集し、効率的なHuman-in-the-loopアノテーションプロセスを構築した。
そして、学習したアーティファクト検出器を第2段階に巻き込み、各画像に画素ごとの信頼マップを割り当てて拡散モデルをチューニングする。
論文 参考訳(メタデータ) (2025-01-21T18:56:41Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Diffusion Noise Feature: Accurate and Fast Generated Image Detection [28.262273539251172]
生成モデルは、驚くほどリアルなイメージを生成できる先進的な段階に達している。
生成された画像に対する既存の画像検出器は、低精度や限定的な一般化といった課題に直面している。
本稿では,生成画像の検出能力を高めるために,強力な一般化機能を備えた表現を求めることにより,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-05T10:01:11Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation [53.04220377034574]
高品質(未条件)な画像生成のための前方拡散プロセスに解析的画像減衰プロセスを導入することを提案する。
本手法は,フォワード画像からノイズへのマッピングを,テクスチメジからゼロへのマッピングとテクスティケロ・ツー・ノイズマッピングの同時マッピングとして表現する。
我々は,CIFAR-10やCelebA-HQ-256などの無条件画像生成や,超解像,サリエンシ検出,エッジ検出,画像インペインティングなどの画像条件下での下流処理について実験を行った。
論文 参考訳(メタデータ) (2023-06-23T18:08:00Z) - Generalizable Synthetic Image Detection via Language-guided Contrastive
Learning [22.4158195581231]
偽ニュースの拡散や偽のプロフィールの作成などの合成画像の真偽の使用は、画像の真正性に関する重要な懸念を提起する。
本稿では,言語指導によるコントラスト学習と検出問題の新たな定式化による,シンプルで効果的な合成画像検出手法を提案する。
提案したLanguAge-guided SynThEsis Detection (LASTED) モデルでは,画像生成モデルに対する一般化性が大幅に向上していることが示されている。
論文 参考訳(メタデータ) (2023-05-23T08:13:27Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。