論文の概要: SplatTalk: 3D VQA with Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.06271v1
- Date: Sat, 08 Mar 2025 16:31:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:49:09.503999
- Title: SplatTalk: 3D VQA with Gaussian Splatting
- Title(参考訳): SplatTalk: ガウス版3D VQA
- Authors: Anh Thai, Songyou Peng, Kyle Genova, Leonidas Guibas, Thomas Funkhouser,
- Abstract要約: 言語誘導型3Dシーン理解は、ロボット工学、AR/VR、人間とコンピュータの相互作用における応用を進める上で重要である。
SplatTalkは,3次元ガウススティング(3DGS)フレームワークを用いて,事前学習したLSMへの直接入力に適した3次元トークンを生成する手法である。
- 参考スコア(独自算出の注目度): 13.211810095081159
- License:
- Abstract: Language-guided 3D scene understanding is important for advancing applications in robotics, AR/VR, and human-computer interaction, enabling models to comprehend and interact with 3D environments through natural language. While 2D vision-language models (VLMs) have achieved remarkable success in 2D VQA tasks, progress in the 3D domain has been significantly slower due to the complexity of 3D data and the high cost of manual annotations. In this work, we introduce SplatTalk, a novel method that uses a generalizable 3D Gaussian Splatting (3DGS) framework to produce 3D tokens suitable for direct input into a pretrained LLM, enabling effective zero-shot 3D visual question answering (3D VQA) for scenes with only posed images. During experiments on multiple benchmarks, our approach outperforms both 3D models trained specifically for the task and previous 2D-LMM-based models utilizing only images (our setting), while achieving competitive performance with state-of-the-art 3D LMMs that additionally utilize 3D inputs.
- Abstract(参考訳): 言語誘導型3Dシーン理解は、ロボット工学、AR/VR、人間とコンピュータのインタラクションにおける応用を進める上で重要である。
2次元視覚言語モデル(VLM)は2次元VQAタスクにおいて顕著に成功したが、3次元データの複雑さと手動アノテーションの高コストのため、3次元領域の進歩は著しく遅かった。
本研究では,3次元ガウススティング(3DGS)フレームワークを用いて,事前学習したLCMに直接入力するのに適した3次元トークンを生成する新しい手法であるSplatTalkを紹介し,画像のみのシーンに対して,効果的なゼロショット3次元視覚質問応答(3D VQA)を実現する。
複数のベンチマーク実験において、本手法は、タスクに特化して訓練された3Dモデルと、画像のみを利用した以前の2D-LMMモデル(設定)の両方より優れており、3D入力を付加的に利用する最先端の3D LMMと競合する性能を実現している。
関連論文リスト
- 3UR-LLM: An End-to-End Multimodal Large Language Model for 3D Scene Understanding [49.15555885075644]
オープンソースの2D MLLMとLCMをベースとしたパイプラインを開発し,高品質な3Dテキストペアを生成する。
本稿では,3次元シーンの正確な解釈を目的としたエンドツーエンド3次元MLLMである3UR-LLMモデルを紹介する。
論文 参考訳(メタデータ) (2025-01-14T03:50:23Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLMは3Dシーンをダイナミックビデオとして扱い、3D位置エンコーディングをこれらの表現に組み込む。
本モデルは,複数の3次元シーン理解ベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-30T14:28:53Z) - Transcrib3D: 3D Referring Expression Resolution through Large Language Models [28.121606686759225]
本稿では,3次元検出手法と大規模言語モデルの創発的推論機能を組み合わせたアプローチであるTranscrib3Dを紹介する。
Transcrib3Dは3D参照解像度ベンチマークで最先端の結果を得る。
提案手法は,提案手法を用いて,参照表現の難易度を含むクエリに対して,実際のロボットがピック・アンド・プレイス・タスクを実行できることを示す。
論文 参考訳(メタデータ) (2024-04-30T02:48:20Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
大規模に統一された3次元表現を探索する3次元基礎モデルであるUni3Dを提案する。
Uni3Dは、事前にトレーニングされた2D ViTのエンドツーエンドを使用して、3Dポイントクラウド機能と画像テキスト整列機能とを一致させる。
強力なUni3D表現は、野生での3D絵画や検索などの応用を可能にする。
論文 参考訳(メタデータ) (2023-10-10T16:49:21Z) - Chat-3D: Data-efficiently Tuning Large Language Model for Universal
Dialogue of 3D Scenes [56.727745047799246]
3Dシーンの理解は幅広い用途で注目されている。
本稿では,事前学習した3次元表現の3次元視覚的知覚能力と,高度なLCMの印象的な推論と会話能力を組み合わせたChat-3Dを提案する。
論文 参考訳(メタデータ) (2023-08-17T03:52:15Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
大規模言語モデル (LLM) と視覚言語モデル (VLM) は、常識推論のような複数のタスクで優れていることが証明されている。
本稿では,大規模言語モデルに3Dワールドを注入し,新しい3D-LLMのファミリーを導入することを提案する。
具体的には、3D-LLMは3Dポイントクラウドとその機能を入力として取り込んで、さまざまな3D関連タスクを実行することができる。
論文 参考訳(メタデータ) (2023-07-24T17:59:02Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
一般的な言語知識と視覚概念を2次元画像から3次元シーン理解に適用するためのトレーニングモデルは、研究者が最近探求を始めたばかりの有望な方向である。
そこで本研究では,モデルによる3次元シーンポイントクラウド表現の学習を可能にする,新しい3次元事前学習手法であるMulti-CLIPを提案する。
論文 参考訳(メタデータ) (2023-06-04T11:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。