HIVQE: Handover Iterative Variational Quantum Eigensolver for Efficient Quantum Chemistry Calculations
- URL: http://arxiv.org/abs/2503.06292v2
- Date: Sun, 16 Mar 2025 11:56:06 GMT
- Title: HIVQE: Handover Iterative Variational Quantum Eigensolver for Efficient Quantum Chemistry Calculations
- Authors: Aidan Pellow-Jarman, Shane McFarthing, Doo Hyung Kang, Pilsun Yoo, Eyuel Eshetu Elala, Rowan Pellow-Jarman, P. Mai Nakliang, Jaewan Kim, June-Koo Kevin Rhee,
- Abstract summary: The Handover Iterative Variational Quantum Eigensolver (HiVQE) is designed to accurately estimate ground-state wavefunctions.<n>By generating compact yet chemically accurate wavefunctions, HiVQE advances quantum chemistry simulations and facilitates the discovery of novel materials.
- Score: 0.18574358541506214
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A novel hybrid quantum-classical approach has been developed to efficiently address the multireference quantum chemistry problem. The Handover Iterative Variational Quantum Eigensolver (HiVQE) is designed to accurately estimate ground-state wavefunctions by leveraging both quantum and classical computing resources. In this framework, noisy intermediate-scale quantum (NISQ) hardwares efficiently explore electron configurations, while classical computers compute the corresponding wavefunction without the effect of noise of NISQ computer, ensuring both accuracy and computational efficiency. By generating compact yet chemically accurate wavefunctions, HiVQE advances quantum chemistry simulations and facilitates the discovery of novel materials. This approach demonstrates significant potential for overcoming the limitations of classical methods in strongly correlated electronic systems.
Related papers
- Quantum Machine Learning of Molecular Energies with Hybrid Quantum-Neural Wavefunction [1.545628748828856]
We introduce a hybrid framework that learns molecular wavefunction using a combination of an efficient quantum circuit and a deep neural network.<n>This approach enhances computational efficiency and accuracy, surpassing traditional quantum computational chemistry methods.
arXiv Detail & Related papers (2025-01-08T04:18:51Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Improved accuracy on noisy devices by non-unitary Variational Quantum
Eigensolver for chemistry applications [0.0]
We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers.
A non-unitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wavefunction Ansatz.
arXiv Detail & Related papers (2021-01-22T20:17:37Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Considerations for evaluating thermodynamic properties with hybrid
quantum-classical computing work-flows [0.0]
Quantum chemistry applications on quantum computers currently rely heavily on the variational quantum eigensolver algorithm.
We present a summary of the hybrid quantum-classical work-flow to compute thermodynamic properties.
We show that through careful selection of work-flow options, nearly order-of-magnitude increases in accuracy are possible at equivalent computing time.
arXiv Detail & Related papers (2020-03-04T19:32:53Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.