Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
- URL: http://arxiv.org/abs/2503.06366v1
- Date: Sun, 09 Mar 2025 00:11:40 GMT
- Title: Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
- Authors: Herman Chau, Helen Jenne, Davis Brown, Jesse He, Mark Raugas, Sara Billey, Henry Kvinge,
- Abstract summary: We introduce a new collection of datasets, the Algebraic Combinatorics dataset Repository (ACD Repo)<n>Each dataset includes an open-ended research-level question and a large collection of examples.<n>We describe all nine datasets, the different ways machine learning models can be applied to them.
- Score: 4.229995708813431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
Related papers
- RV-Syn: Rational and Verifiable Mathematical Reasoning Data Synthesis based on Structured Function Library [58.404895570822184]
RV-Syn is a novel mathematical Synthesis approach.
It generates graphs as solutions by combining Python-formatted functions from this library.
Based on the constructed graph, we achieve solution-guided logic-aware problem generation.
arXiv Detail & Related papers (2025-04-29T04:42:02Z) - Generative Modeling for Mathematical Discovery [0.19791587637442667]
We present a new implementation of the genetic algorithm it funsearch.
Our aim is to generate examples of interest to mathematicians.
It does not require expertise in machine learning or access to high-performance computing resources.
arXiv Detail & Related papers (2025-03-14T03:54:43Z) - Algebraic Machine Learning: Learning as computing an algebraic decomposition of a task [41.94295877935867]
We propose an alternative foundation based on Abstract Algebra, with mathematics that facilitates the analysis of learning.<n>In this approach, the goal of the task and the data are encoded as axioms of an algebra, and a model is obtained where only these axioms and their logical consequences hold.<n>We validate this new learning principle on standard datasets such as MNIST, FashionMNIST, CIFAR-10, and medical images, achieving performance comparable to optimized multilayer perceptrons.
arXiv Detail & Related papers (2025-02-27T10:13:42Z) - MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
We introduce MathFimer, a novel framework for mathematical reasoning step expansion.<n>We develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset.<n>We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains.
arXiv Detail & Related papers (2025-02-17T11:22:24Z) - Large Language Models for Mathematical Analysis [3.7325315394927023]
This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI.<n>We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics.<n>We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems.
arXiv Detail & Related papers (2024-12-28T20:37:55Z) - Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning [85.635988711588]
We argue that enhancing the capabilities of large language models requires a paradigm shift in the design of mathematical datasets.<n>We advocate for mathematical dataset developers to consider the concept of "motivated proof", introduced by G. P'olya in 1949, which can serve as a blueprint for datasets that offer a better proof learning signal.<n>We provide a questionnaire designed specifically for math datasets that we urge creators to include with their datasets.
arXiv Detail & Related papers (2024-12-19T18:55:17Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models [62.815222721144636]
We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K.
This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5.
Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark.
arXiv Detail & Related papers (2024-06-25T05:43:21Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
We introduce an extensive mathematics dataset called "MathQuest" sourced from the 11th and 12th standard Mathematics NCERT textbooks.
We conduct fine-tuning experiments with three prominent large language models: LLaMA-2, WizardMath, and MAmmoTH.
Our experiments reveal that among the three models, MAmmoTH-13B emerges as the most proficient, achieving the highest level of competence in solving the presented mathematical problems.
arXiv Detail & Related papers (2024-04-19T08:45:42Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
We propose a new large-scale dataset, ConvFinQA, to study the chain of numerical reasoning in conversational question answering.
Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations.
arXiv Detail & Related papers (2022-10-07T23:48:50Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
We propose a dataset, Machine Number Sense (MNS), consisting of visual arithmetic problems automatically generated using a grammar model--And-Or Graph (AOG)
These visual arithmetic problems are in the form of geometric figures.
We benchmark the MNS dataset using four predominant neural network models as baselines in this visual reasoning task.
arXiv Detail & Related papers (2020-04-25T17:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.