OV-SCAN: Semantically Consistent Alignment for Novel Object Discovery in Open-Vocabulary 3D Object Detection
- URL: http://arxiv.org/abs/2503.06435v1
- Date: Sun, 09 Mar 2025 04:22:08 GMT
- Title: OV-SCAN: Semantically Consistent Alignment for Novel Object Discovery in Open-Vocabulary 3D Object Detection
- Authors: Adrian Chow, Evelien Riddell, Yimu Wang, Sean Sedwards, Krzysztof Czarnecki,
- Abstract summary: OV-SCAN is an Open-Vocabulary 3D framework that enforces Semantically Consistent Alignment for Novel object discovery.<n>OV-SCAN employs two core strategies: discovering precise 3D annotations and filtering out low-quality or corrupted alignment pairs.
- Score: 6.449894994514711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-vocabulary 3D object detection for autonomous driving aims to detect novel objects beyond the predefined training label sets in point cloud scenes. Existing approaches achieve this by connecting traditional 3D object detectors with vision-language models (VLMs) to regress 3D bounding boxes for novel objects and perform open-vocabulary classification through cross-modal alignment between 3D and 2D features. However, achieving robust cross-modal alignment remains a challenge due to semantic inconsistencies when generating corresponding 3D and 2D feature pairs. To overcome this challenge, we present OV-SCAN, an Open-Vocabulary 3D framework that enforces Semantically Consistent Alignment for Novel object discovery. OV-SCAN employs two core strategies: discovering precise 3D annotations and filtering out low-quality or corrupted alignment pairs (arising from 3D annotation, occlusion-induced, or resolution-induced noise). Extensive experiments on the nuScenes dataset demonstrate that OV-SCAN achieves state-of-the-art performance.
Related papers
- DriveGEN: Generalized and Robust 3D Detection in Driving via Controllable Text-to-Image Diffusion Generation [49.32104127246474]
DriveGEN is a training-free controllable Text-to-Image Diffusion Generation.
It consistently preserves objects with precise 3D geometry across diverse Out-of-Distribution generations.
arXiv Detail & Related papers (2025-03-14T06:35:38Z) - Hierarchical Cross-Modal Alignment for Open-Vocabulary 3D Object Detection [45.68105299990119]
Open-vocabulary 3D object detection (OV-3DOD) aims at localizing and classifying novel objects beyond closed sets.
We propose a hierarchical framework, named HCMA, to simultaneously learn local object and global scene information for OV-3DOD.
arXiv Detail & Related papers (2025-03-10T17:55:22Z) - Open Vocabulary Monocular 3D Object Detection [10.424711580213616]
We pioneer the study of open-vocabulary monocular 3D object detection, a novel task that aims to detect and localize objects in 3D space from a single RGB image.
We introduce a class-agnostic approach that leverages open-vocabulary 2D detectors and lifts 2D bounding boxes into 3D space.
Our approach decouples the recognition and localization of objects in 2D from the task of estimating 3D bounding boxes, enabling generalization across unseen categories.
arXiv Detail & Related papers (2024-11-25T18:59:17Z) - Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [57.53523870705433]
We propose a novel open-vocabulary monocular 3D object detection framework, dubbed OVM3D-Det.
OVM3D-Det does not require high-precision LiDAR or 3D sensor data for either input or generating 3D bounding boxes.
It employs open-vocabulary 2D models and pseudo-LiDAR to automatically label 3D objects in RGB images, fostering the learning of open-vocabulary monocular 3D detectors.
arXiv Detail & Related papers (2024-11-23T21:37:21Z) - Collaborative Novel Object Discovery and Box-Guided Cross-Modal Alignment for Open-Vocabulary 3D Object Detection [34.91703960513125]
CoDAv2 is a unified framework designed to tackle both the localization and classification of novel 3D objects.
CoDAv2 outperforms the best-performing method by a large margin.
Source code and pre-trained models are available at the GitHub project page.
arXiv Detail & Related papers (2024-06-02T18:32:37Z) - OV-Uni3DETR: Towards Unified Open-Vocabulary 3D Object Detection via Cycle-Modality Propagation [67.56268991234371]
OV-Uni3DETR achieves the state-of-the-art performance on various scenarios, surpassing existing methods by more than 6% on average.
Code and pre-trained models will be released later.
arXiv Detail & Related papers (2024-03-28T17:05:04Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
We tackle the limitations of current LiDAR-based 3D object detection systems.
We introduce a universal textscFind n' Propagate approach for 3D OV tasks.
We achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes.
arXiv Detail & Related papers (2024-03-20T12:51:30Z) - CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for
Open-vocabulary 3D Object Detection [38.144357345583664]
Open-vocabulary 3D Object Detection (OV-3DDet) aims to detect objects from an arbitrary list of categories within a 3D scene, which remains seldom explored in the literature.
This paper aims at addressing the two problems simultaneously via a unified framework, under the condition of limited base categories.
To localize novel 3D objects, we propose an effective 3D Novel Object Discovery strategy, which utilizes both the 3D box geometry priors and 2D semantic open-vocabulary priors to generate pseudo box labels of the novel objects.
arXiv Detail & Related papers (2023-10-04T16:50:51Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.