Hierarchical Cross-Modal Alignment for Open-Vocabulary 3D Object Detection
- URL: http://arxiv.org/abs/2503.07593v1
- Date: Mon, 10 Mar 2025 17:55:22 GMT
- Title: Hierarchical Cross-Modal Alignment for Open-Vocabulary 3D Object Detection
- Authors: Youjun Zhao, Jiaying Lin, Rynson W. H. Lau,
- Abstract summary: Open-vocabulary 3D object detection (OV-3DOD) aims at localizing and classifying novel objects beyond closed sets.<n>We propose a hierarchical framework, named HCMA, to simultaneously learn local object and global scene information for OV-3DOD.
- Score: 45.68105299990119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-vocabulary 3D object detection (OV-3DOD) aims at localizing and classifying novel objects beyond closed sets. The recent success of vision-language models (VLMs) has demonstrated their remarkable capabilities to understand open vocabularies. Existing works that leverage VLMs for 3D object detection (3DOD) generally resort to representations that lose the rich scene context required for 3D perception. To address this problem, we propose in this paper a hierarchical framework, named HCMA, to simultaneously learn local object and global scene information for OV-3DOD. Specifically, we first design a Hierarchical Data Integration (HDI) approach to obtain coarse-to-fine 3D-image-text data, which is fed into a VLM to extract object-centric knowledge. To facilitate the association of feature hierarchies, we then propose an Interactive Cross-Modal Alignment (ICMA) strategy to establish effective intra-level and inter-level feature connections. To better align features across different levels, we further propose an Object-Focusing Context Adjustment (OFCA) module to refine multi-level features by emphasizing object-related features. Extensive experiments demonstrate that the proposed method outperforms SOTA methods on the existing OV-3DOD benchmarks. It also achieves promising OV-3DOD results even without any 3D annotations.
Related papers
- IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.
We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.
We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
arXiv Detail & Related papers (2025-04-09T12:36:48Z) - OV-SCAN: Semantically Consistent Alignment for Novel Object Discovery in Open-Vocabulary 3D Object Detection [6.449894994514711]
OV-SCAN is an Open-Vocabulary 3D framework that enforces Semantically Consistent Alignment for Novel object discovery.<n>OV-SCAN employs two core strategies: discovering precise 3D annotations and filtering out low-quality or corrupted alignment pairs.
arXiv Detail & Related papers (2025-03-09T04:22:08Z) - Open Vocabulary Monocular 3D Object Detection [10.424711580213616]
We pioneer the study of open-vocabulary monocular 3D object detection, a novel task that aims to detect and localize objects in 3D space from a single RGB image.
We introduce a class-agnostic approach that leverages open-vocabulary 2D detectors and lifts 2D bounding boxes into 3D space.
Our approach decouples the recognition and localization of objects in 2D from the task of estimating 3D bounding boxes, enabling generalization across unseen categories.
arXiv Detail & Related papers (2024-11-25T18:59:17Z) - Unlocking Textual and Visual Wisdom: Open-Vocabulary 3D Object Detection Enhanced by Comprehensive Guidance from Text and Image [70.02187124865627]
Open-vocabulary 3D object detection (OV-3DDet) aims to localize and recognize both seen and previously unseen object categories within any new 3D scene.
We leverage a vision foundation model to provide image-wise guidance for discovering novel classes in 3D scenes.
We demonstrate significant improvements in accuracy and generalization, highlighting the potential of foundation models in advancing open-vocabulary 3D object detection.
arXiv Detail & Related papers (2024-07-07T04:50:04Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - Improving 3D Object Detection with Channel-wise Transformer [58.668922561622466]
We propose a two-stage 3D object detection framework (CT3D) with minimal hand-crafted design.
CT3D simultaneously performs proposal-aware embedding and channel-wise context aggregation.
It achieves the AP of 81.77% in the moderate car category on the KITTI test 3D detection benchmark.
arXiv Detail & Related papers (2021-08-23T02:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.