論文の概要: A Quantitative Evaluation of the Expressivity of BMI, Pose and Gender in Body Embeddings for Recognition and Identification
- arxiv url: http://arxiv.org/abs/2503.06451v3
- Date: Wed, 07 May 2025 20:16:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 15:15:32.924602
- Title: A Quantitative Evaluation of the Expressivity of BMI, Pose and Gender in Body Embeddings for Recognition and Identification
- Title(参考訳): 身体内埋め込みにおけるBMI, Pose, Genderの表現率の定量的評価
- Authors: Basudha Pal, Siyuan Huang, Rama Chellappa,
- Abstract要約: 我々は,学習した特徴と特定の属性の相互情報として定義された表現性の概念を拡張し,属性のエンコード方法の定量化を行う。
その結果,BMIは最終層において高い表現性を示し,認識におけるその支配的な役割を示していることがわかった。
これらの結果は,ReIDにおける身体属性の中心的役割を示し,属性駆動相関を明らかにするための原則的アプローチを確立した。
- 参考スコア(独自算出の注目度): 56.10719736365069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Person Re-identification (ReID) systems that match individuals across images or video frames are essential in many real-world applications. However, existing methods are often influenced by attributes such as gender, pose, and body mass index (BMI), which vary in unconstrained settings and raise concerns related to fairness and generalization. To address this, we extend the notion of expressivity, defined as the mutual information between learned features and specific attributes, using a secondary neural network to quantify how strongly attributes are encoded. Applying this framework to three ReID models, we find that BMI consistently shows the highest expressivity in the final layers, indicating its dominant role in recognition. In the last attention layer, attributes are ranked as BMI > Pitch > Gender > Yaw, revealing their relative influences in representation learning. Expressivity values also evolve across layers and training epochs, reflecting a dynamic encoding of attributes. These findings demonstrate the central role of body attributes in ReID and establish a principled approach for uncovering attribute driven correlations.
- Abstract(参考訳): 画像やビデオフレーム間で個人をマッチングする人物再識別(ReID)システムは、多くの現実世界のアプリケーションにおいて不可欠である。
しかし、既存の手法は、性別、ポーズ、身体質量指数(BMI)などの属性に影響されがちである。
これを解決するために、学習した特徴と特定の属性の相互情報として定義された表現性の概念を拡張し、二次的ニューラルネットワークを用いて、属性のエンコード方法の定量化を行う。
このフレームワークを3つのReIDモデルに適用すると、BMIは最終層において常に高い表現性を示し、認識におけるその支配的な役割を示していることが分かる。
最後の注意層では、属性をBMI > Pitch > Gender > Yaw と分類し、表現学習における相対的な影響を明らかにした。
表現力の値は層を横断して進化し、属性の動的なエンコーディングを反映してエポックを訓練する。
これらの結果は,ReIDにおける身体属性の中心的役割を示し,属性駆動相関を明らかにするための原則的アプローチを確立した。
関連論文リスト
- Adaptive Prototype Model for Attribute-based Multi-label Few-shot Action Recognition [11.316708754749103]
現実世界の行動認識システムでは、より多くの属性を組み込むことで、人間の行動をより包括的に理解できるようになる。
本稿では,人間行動認識のためのアダプティブ属性プロトタイプモデル(AAPM)を提案する。
AAPMは属性に基づく複数ラベルの複数ショットのアクション認識と単一ラベルの少数ショットのアクション認識の両方において、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-02-18T06:39:28Z) - Hybrid Discriminative Attribute-Object Embedding Network for Compositional Zero-Shot Learning [83.10178754323955]
HDA-OE(Hybrid Discriminative Attribute-Object Embedding)ネットワークは,属性とオブジェクトの視覚表現との複雑な相互作用を解決するために提案される。
トレーニングデータの多様性を高めるため、HDA-OEは属性駆動型データ合成(ADDS)モジュールを導入した。
HDA-OEは、モデルの識別能力をさらに向上するため、サブクラス駆動の差別的埋め込み(SDDE)モジュールを導入している。
提案モデルを3つのベンチマークデータセットで評価し,その妥当性と信頼性を検証した。
論文 参考訳(メタデータ) (2024-11-28T09:50:25Z) - ArtVLM: Attribute Recognition Through Vision-Based Prefix Language Modeling [32.55352435358949]
属性認識のための文生成に基づく検索定式化を提案する。
画像上で認識される各属性に対して、短い文を生成する視覚条件付き確率を測定する。
生成的検索が2つの視覚的推論データセットのコントラスト的検索を一貫して上回ることを示す実験を通して実証する。
論文 参考訳(メタデータ) (2024-08-07T21:44:29Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
汎用視覚言語モデル(英: General-purpose Vision-Language Model, VLM)は、共通感性属性のための豊富な知識源である。
我々は,VLM予測値と人間定義属性分布の対応関係を解析した。
複数のベンチマークの顔属性分類データセットの実験は、既存の教師なしベースラインよりもモデルの公平性の向上を示している。
論文 参考訳(メタデータ) (2024-03-15T18:37:15Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
補助的なアノテーションやデータなしに両方の制約に対処するために,新しいFIne-fine Representation and Recomposition (FIRe$2$) フレームワークを提案する。
FIRe$2$は、広く使われている5つのRe-IDベンチマークで最先端のパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2023-08-21T12:59:48Z) - Hierarchical Visual Primitive Experts for Compositional Zero-Shot
Learning [52.506434446439776]
合成ゼロショット学習(CZSL)は、既知のプリミティブ(属性とオブジェクト)の事前知識で構成を認識することを目的としている。
このような問題に対処するために,コンポジショントランスフォーマー(CoT)と呼ばれるシンプルでスケーラブルなフレームワークを提案する。
提案手法は,MIT-States,C-GQA,VAW-CZSLなど,いくつかのベンチマークでSoTA性能を実現する。
論文 参考訳(メタデータ) (2023-08-08T03:24:21Z) - TransFA: Transformer-based Representation for Face Attribute Evaluation [87.09529826340304]
我々はtextbfTransFA を用いたtextbfattribute 評価のための新しい textbf Transformer 表現を提案する。
提案するTransFAは,最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-12T10:58:06Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
属性ローカライズ機能を統合した画像表現は、任意のショット、すなわちゼロショットと少数ショットのイメージ分類タスクに有用である、と我々は主張する。
クラスレベルの属性のみを用いてグローバルな特徴とローカルな特徴を共同で学習する新しい表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-04T02:25:40Z) - A-FMI: Learning Attributions from Deep Networks via Feature Map
Importance [58.708607977437794]
勾配に基づくアトリビューション法は畳み込みニューラルネットワーク(CNN)の理解を助けることができる
帰属特徴の冗長性と勾配飽和問題は、帰属方法がまだ直面する課題である。
本稿では,各特徴マップの寄与度を高めるための新しい概念,特徴マップ重要度 (FMI) と,勾配飽和問題に対処するためのFMIによる新しい帰属法を提案する。
論文 参考訳(メタデータ) (2021-04-12T14:54:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。