Entangled mixed-state datasets generation by quantum machine learning
- URL: http://arxiv.org/abs/2503.06452v1
- Date: Sun, 09 Mar 2025 05:19:20 GMT
- Title: Entangled mixed-state datasets generation by quantum machine learning
- Authors: Ruibin Xu, Zheng Zheng, Yanying Liang, Zhu-Jun Zheng,
- Abstract summary: This paper provides a method for generating mixed-state datasets for entangled-separable classification tasks.<n>It furthers the assembly of quantum entangled datasets, inspires the discovery of new entanglement criteria with both classical and quantum machine learning.
- Score: 1.5467284361227343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of classical machine learning is inherently linked to the establishment and progression of classical dataset. In quantum machine learning (QML), there is an analogous imperative for the development of quantum entangled datasets comprised with huge quantity and high quality. Especially for multipartite mixed-state datasets, due to the lack of suitable entanglement criteria, previous researchers often could only perform classification tasks on datasets extended based on Werner states or other well-structured states. This paper is dedicated to provide a method for generating mixed-state datasets for entangled-separable classification tasks. This method is based on supervised quantum machine learning and the concentratable entanglement measures. It furthers the assembly of quantum entangled datasets, inspires the discovery of new entanglement criteria with both classical and quantum machine learning, and provides a valuable resource for benchmarking QML models, thereby opening new avenues for exploring the rich structure of quantum entanglement in mixed states. Additionally, we benchmark several machine learning models using this dataset, offering guidance and suggestions for the selection of QML models.
Related papers
- Benchmarking quantum machine learning kernel training for classification tasks [0.0]
This study focuses on quantum kernel methods in the context of classification tasks.<n>It examines the performance of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) in connection with two quantum feature mappings.<n> Experimental results indicate that quantum methods exhibit varying performance across different datasets.
arXiv Detail & Related papers (2024-08-17T10:53:06Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z) - Binary classifiers for noisy datasets: a comparative study of existing
quantum machine learning frameworks and some new approaches [0.0]
We apply Quantum Machine Learning frameworks to improve binary classification.
noisy datasets are in financial datasets.
New models exhibit better learning characteristics to asymmetrical noise in the dataset.
arXiv Detail & Related papers (2021-11-05T10:29:05Z) - Entangled Datasets for Quantum Machine Learning [0.0]
We argue that one should instead employ quantum datasets composed of quantum states.
We show how a quantum neural network can be trained to generate the states in the NTangled dataset.
We also consider an alternative entanglement-based dataset, which is scalable and is composed of states prepared by quantum circuits.
arXiv Detail & Related papers (2021-09-08T02:20:13Z) - QDataset: Quantum Datasets for Machine Learning [1.160208922584163]
The QDataSet is a quantum dataset designed specifically to facilitate the training and development of QML algorithms.
The datasets are structured to provide a wealth of information to enable machine learning practitioners to use the QDataSet to solve problems in applied quantum computation.
Accompanying the datasets on the associated GitHub repository are a set of demonstrating the use of the QDataSet in a range of optimisation contexts.
arXiv Detail & Related papers (2021-08-15T05:30:59Z) - Clustering and enhanced classification using a hybrid quantum
autoencoder [0.0]
We propose a novel approach in which the extraction of information from quantum states is undertaken in a classical representational-space.
This variational QML algorithm learns to identify, and classically represent, their essential distinguishing characteristics.
The analysis and employment of the HQA model are presented in the context of amplitude encoded states.
arXiv Detail & Related papers (2021-07-26T06:50:31Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.