A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models
- URL: http://arxiv.org/abs/2303.15626v1
- Date: Mon, 27 Mar 2023 22:48:28 GMT
- Title: A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models
- Authors: Mohamed Hibat-Allah, Marta Mauri, Juan Carrasquilla, Alejandro
Perdomo-Ortiz
- Abstract summary: We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative modeling has seen a rising interest in both classical and quantum
machine learning, and it represents a promising candidate to obtain a practical
quantum advantage in the near term. In this study, we build over a proposed
framework for evaluating the generalization performance of generative models,
and we establish the first quantitative comparative race towards practical
quantum advantage (PQA) between classical and quantum generative models, namely
Quantum Circuit Born Machines (QCBMs), Transformers (TFs), Recurrent Neural
Networks (RNNs), Variational Autoencoders (VAEs), and Wasserstein Generative
Adversarial Networks (WGANs). After defining four types of PQAs scenarios, we
focus on what we refer to as potential PQA, aiming to compare quantum models
with the best-known classical algorithms for the task at hand. We let the
models race on a well-defined and application-relevant competition setting,
where we illustrate and demonstrate our framework on 20 variables (qubits)
generative modeling task. Our results suggest that QCBMs are more efficient in
the data-limited regime than the other state-of-the-art classical generative
models. Such a feature is highly desirable in a wide range of real-world
applications where the available data is scarce.
Related papers
- Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset [0.0]
We introduce a Quantum-Classical Bayesian Neural Network (QCBNN) that is capable to perform uncertainty-aware classification of medical dataset.
We track multiple behavioral metrics that capture both predictive performance as well as model's uncertainty.
It is our ambition to create a hybrid model that is capable to classify samples in a more uncertainty aware fashion.
arXiv Detail & Related papers (2024-06-10T14:23:25Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
We propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits.
We test our model on the image generation problem.
Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr'echet distance (FID) score.
arXiv Detail & Related papers (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
We introduce a quantum-enhanced VAE (QeVAE) that uses quantum correlations to improve the fidelity over classical VAEs.
We empirically show that the QeVAE outperforms classical models on several classes of quantum states.
Our work paves the way for new applications of quantum generative learning algorithms.
arXiv Detail & Related papers (2023-05-02T16:50:24Z) - A performance characterization of quantum generative models [35.974070202997176]
We compare quantum circuits used for quantum generative modeling.
We learn the underlying probability distribution of the data sets via two popular training methods.
We empirically find that a variant of the discrete architecture, which learns the copula of the probability distribution, outperforms all other methods.
arXiv Detail & Related papers (2023-01-23T11:00:29Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Binary classifiers for noisy datasets: a comparative study of existing
quantum machine learning frameworks and some new approaches [0.0]
We apply Quantum Machine Learning frameworks to improve binary classification.
noisy datasets are in financial datasets.
New models exhibit better learning characteristics to asymmetrical noise in the dataset.
arXiv Detail & Related papers (2021-11-05T10:29:05Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.