Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
- URL: http://arxiv.org/abs/2503.06457v1
- Date: Sun, 09 Mar 2025 05:30:28 GMT
- Title: Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
- Authors: Yanbiao Ma, Wei Dai, Wenke Huang, Jiayi Chen,
- Abstract summary: We propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally.<n>We first introduce the concept of the geometric shape of an embedding distribution.<n>We then address the challenge of obtaining global geometric shapes under privacy constraints.
- Score: 7.893874342163829
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
In open-world scenarios, global models may struggle to predict well on entirely new domain data captured by certain media.
Existing methods still rely on strong statistical correlations between samples and labels to address this issue.
We introduce FedCD, an overall optimization framework at both the local and global levels.
arXiv Detail & Related papers (2024-07-27T05:06:31Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER)
We propose an Adaptive Global-Local Representation Learning and Selection framework.
arXiv Detail & Related papers (2024-01-20T02:21:41Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Multi-Level Branched Regularization for Federated Learning [46.771459325434535]
We propose a novel architectural regularization technique that constructs multiple auxiliary branches in each local model by grafting local and globalworks at several different levels.
We demonstrate remarkable performance gains in terms of accuracy and efficiency compared to existing methods.
arXiv Detail & Related papers (2022-07-14T13:59:26Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.