MetaXCR: Reinforcement-Based Meta-Transfer Learning for Cross-Lingual Commonsense Reasoning
- URL: http://arxiv.org/abs/2503.06531v1
- Date: Sun, 09 Mar 2025 09:27:57 GMT
- Title: MetaXCR: Reinforcement-Based Meta-Transfer Learning for Cross-Lingual Commonsense Reasoning
- Authors: Jie He, Yu Fu,
- Abstract summary: Cross-lingual Low-Resource Commonsense Reasoning aims to leverage diverse existed English datasets to help the model adapt to new cross-lingual target datasets with limited labeled data.<n>In this paper, we propose a multi-source adapter for cross-lingual low-resource Commonsense Reasoning (MetaXCR)
- Score: 6.414022634745093
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Commonsense reasoning (CR) has been studied in many pieces of domain and has achieved great progress with the aid of large datasets. Unfortunately, most existing CR datasets are built in English, so most previous work focus on English. Furthermore, as the annotation of commonsense reasoning is costly, it is impossible to build a large dataset for every novel task. Therefore, there are growing appeals for Cross-lingual Low-Resource Commonsense Reasoning, which aims to leverage diverse existed English datasets to help the model adapt to new cross-lingual target datasets with limited labeled data. In this paper, we propose a multi-source adapter for cross-lingual low-resource Commonsense Reasoning (MetaXCR). In this framework, we first extend meta learning by incorporating multiple training datasets to learn a generalized task adapters across different tasks. Then, we further introduce a reinforcement-based sampling strategy to help the model sample the source task that is the most helpful to the target task. Finally, we introduce two types of cross-lingual meta-adaption methods to enhance the performance of models on target languages. Extensive experiments demonstrate MetaXCR is superior over state-of-the-arts, while being trained with fewer parameters than other work.
Related papers
- CL2CM: Improving Cross-Lingual Cross-Modal Retrieval via Cross-Lingual
Knowledge Transfer [23.58317401302547]
We propose a general framework, Cross-Lingual to Cross-Modal (CL2CM), which improves the alignment between vision and target language using cross-lingual transfer.
We evaluate our proposed approach on two multilingual image-text datasets, Multi30K and MSCOCO, and one video-text dataset, VATEX.
arXiv Detail & Related papers (2023-12-14T14:29:53Z) - Lost in Translation, Found in Spans: Identifying Claims in Multilingual
Social Media [40.26888469822391]
Claim span identification (CSI) is an important step in fact-checking pipelines.
Despite its importance to journalists and human fact-checkers, it remains a severely understudied problem.
We create a novel dataset, X-CLAIM, consisting of 7K real-world claims collected from numerous social media platforms in five Indian languages and English.
arXiv Detail & Related papers (2023-10-27T15:28:12Z) - MetaXLR -- Mixed Language Meta Representation Transformation for
Low-resource Cross-lingual Learning based on Multi-Armed Bandit [0.0]
We propose an enhanced approach which uses multiple source languages chosen in a data driven manner.
We achieve state of the art results on the NER task for the extremely low resource languages while using the same amount of data.
arXiv Detail & Related papers (2023-05-31T18:22:33Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
Data scarcity is a crucial issue for the development of highly multilingual NLP systems.
We propose XTREME-UP, a benchmark defined by its focus on the scarce-data scenario rather than zero-shot.
XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies.
arXiv Detail & Related papers (2023-05-19T18:00:03Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data.
Despite of such rapid progress and widespread application, the datasets in languages other than high-resource languages such as English remain scarce.
We propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment.
arXiv Detail & Related papers (2021-07-11T09:35:16Z) - MetaXL: Meta Representation Transformation for Low-resource
Cross-lingual Learning [91.5426763812547]
Cross-lingual transfer learning is one of the most effective methods for building functional NLP systems for low-resource languages.
We propose MetaXL, a meta-learning based framework that learns to transform representations judiciously from auxiliary languages to a target one.
arXiv Detail & Related papers (2021-04-16T06:15:52Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training,
Understanding and Generation [100.09099800591822]
XGLUE is a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models.
XGLUE provides 11 diversified tasks that cover both natural language understanding and generation scenarios.
arXiv Detail & Related papers (2020-04-03T07:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.