論文の概要: Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
- arxiv url: http://arxiv.org/abs/2503.06567v1
- Date: Sun, 09 Mar 2025 11:50:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 20:09:44.489672
- Title: Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
- Title(参考訳): 複雑な問題解決のための知識グラフ付きRAGによる人間の認知
- Authors: Yao Cheng, Yibo Zhao, Jiapeng Zhu, Yao Liu, Xing Sun, Xiang Li,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域にわたる変換ポテンシャルを実証している。
検索・拡張生成(RAG)はLLMの精度を高めるための有望なソリューションとして浮上している。
我々は認知にインスパイアされたグラフベースのRAGフレームワークであるCogGRAGを提案する。
- 参考スコア(独自算出の注目度): 32.293348354802504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にわたる変換可能性を示しているが、知識統合や複雑な問題推論において大きな課題に直面しており、幻覚や信頼できないアウトプットにつながっている。
Retrieval-Augmented Generation (RAG) は、外部知識を取り入れたLCMの精度を高めるための有望なソリューションとして登場した。
しかし、従来のRAGシステムは複雑な関係情報処理や多段階推論に苦慮し、高度な問題解決タスクにおいてその効果を制限している。
これらの制約に対処するため,知識グラフ質問回答(KGQA)におけるLLMの性能向上を目的とした認知型グラフベースRAGフレームワークであるCogGRAGを提案する。
複雑な問題を分解し、自己検証を行う人間の認知プロセスに触発されて、我々のフレームワークは、自己検証を伴う分解、検索、推論という3段階の方法論を導入している。
これらのコンポーネントを統合することで、複雑な問題解決において、CagGRAGはLLMの精度を向上させる。
4つのベンチマークデータセットで3つのLCMバックボーンを用いて系統的な実験を行い、そこではCagGRAGがベースラインを上回ります。
関連論文リスト
- CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
CoT-RAGは3つの重要な設計を持つ新しい推論フレームワークである。
知識グラフ駆動のCoT生成、学習可能な知識ケース対応RAG、擬似プログラム実行などを備えている。
最先端の方法と比較すると、CoT-RAGは4.0%から23.0%の精度で大幅に改善されている。
論文 参考訳(メタデータ) (2025-04-18T07:55:09Z) - RAG-KG-IL: A Multi-Agent Hybrid Framework for Reducing Hallucinations and Enhancing LLM Reasoning through RAG and Incremental Knowledge Graph Learning Integration [4.604003661048267]
RAG-KG-ILは、大規模言語モデルの推論能力を高めるために設計された、新しいマルチエージェントハイブリッドフレームワークである。
Retrieval-Augmented Generation (RAG) と Knowledge Graphs (KG) をインクリメンタルラーニング (IL) アプローチに統合する。
我々は、健康関連クエリを含む実世界のケーススタディを用いて、このフレームワークを評価する。
論文 参考訳(メタデータ) (2025-03-14T11:50:16Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
最近の大規模言語モデル(LLM)推論は、限られたドメイン知識、幻覚への感受性、制約された推論深さに悩まされている。
本稿では、ステップワイズ知識グラフ検索とステップワイズ推論の統合に関する最初の研究について述べる。
本稿では,プロセス指向の知識グラフ構築を中心としたフレームワークであるKG-RAR,階層的検索戦略,検索後処理と報酬モデルを提案する。
論文 参考訳(メタデータ) (2025-03-03T15:20:41Z) - ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning [92.76959707441954]
我々はLLM推論性能を評価するための総合的な評価フレームワークであるZebraLogicを紹介した。
ZebraLogicは、制御可能で定量化可能な複雑さを持つパズルの生成を可能にする。
その結果,複雑性が増大するにつれて,精度が著しく低下することが明らかとなった。
論文 参考訳(メタデータ) (2025-02-03T06:44:49Z) - Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
グラフ構造上の課題は、その非線形で複雑な性質のために本質的に困難である。
本研究では,高次構造的特徴を正確に保存するために,グラフを画像に変換する手法を提案する。
マルチモーダルな大規模言語モデルと単純な検索手法を組み合わせた革新的なパラダイムを生かし、新しい効果的なフレームワークを開発することを目指す。
論文 参考訳(メタデータ) (2025-01-21T08:28:10Z) - A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models [15.190033208947051]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)をカスタマイズするための有望なソリューションとして登場した。
本調査は,GraphRAG(Graph-based Retrieval-Augmented Generation)の系統的解析である。
論文 参考訳(メタデータ) (2025-01-21T06:25:21Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
医療、法律、金融などの分野における高い意思決定タスクは、精度、包括性、論理的一貫性のレベルを必要とする。
これらの問題に対処するための,ニューロシンボリックAIプラットフォームを開発した。
このプラットフォームは、知識抽出とアライメントのための微調整LDMと、堅牢なシンボリック推論エンジンを統合している。
論文 参考訳(メタデータ) (2024-06-26T00:00:45Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
本研究では,知識グラフ(KG)と大規模言語モデル(LLM)の緊密な協調を含む協調学習自由推論手法を提案する。
このような協調的な手法により、より信頼性の高い知識に基づく推論を実現し、推論結果の追跡を容易にする。
論文 参考訳(メタデータ) (2024-02-07T15:56:17Z) - Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph [29.447300472617826]
Think-on-Graph (ToG)は、大規模言語モデル(LLM)における外部知識グラフ(KG)に対する新しいアプローチである。
ToGはKG上でビームサーチを繰り返し実行し、最も有望な推論経路を発見し、最も可能性の高い推論結果を返す。
ToGは、以前のSOTAが追加トレーニングに依存する9つのデータセットのうち6つで、全体的なSOTAを達成する。
論文 参考訳(メタデータ) (2023-07-15T03:31:38Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。