論文の概要: Chameleon: On the Scene Diversity and Domain Variety of AI-Generated Videos Detection
- arxiv url: http://arxiv.org/abs/2503.06624v1
- Date: Sun, 09 Mar 2025 13:58:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:48:42.538976
- Title: Chameleon: On the Scene Diversity and Domain Variety of AI-Generated Videos Detection
- Title(参考訳): Chameleon:AI生成ビデオ検出の多様性と領域の多様性について
- Authors: Meiyu Zeng, Xingming Liao, Canyu Chen, Nankai Lin, Zhuowei Wang, Chong Chen, Aimin Yang,
- Abstract要約: AI生成ビデオ検出のための既存のデータセットは、多様性、複雑性、リアリズムの限界を示す。
我々は、複数の生成ツールと様々な実ビデオソースを通してビデオを生成する。
同時に、シーンスイッチやダイナミックな視点変化など、ビデオの現実的な複雑さを保ちます。
- 参考スコア(独自算出の注目度): 4.66355848422886
- License:
- Abstract: Artificial intelligence generated content (AIGC), known as DeepFakes, has emerged as a growing concern because it is being utilized as a tool for spreading disinformation. While much research exists on identifying AI-generated text and images, research on detecting AI-generated videos is limited. Existing datasets for AI-generated videos detection exhibit limitations in terms of diversity, complexity, and realism. To address these issues, this paper focuses on AI-generated videos detection and constructs a diverse dataset named Chameleon. We generate videos through multiple generation tools and various real video sources. At the same time, we preserve the videos' real-world complexity, including scene switches and dynamic perspective changes, and expand beyond face-centered detection to include human actions and environment generation. Our work bridges the gap between AI-generated dataset construction and real-world forensic needs, offering a valuable benchmark to counteract the evolving threats of AI-generated content.
- Abstract(参考訳): DeepFakesとして知られる人工知能生成コンテンツ(AIGC)は、偽情報を広めるためのツールとして利用されているため、懸念が高まっている。
AI生成したテキストや画像の識別に関する研究は数多く存在するが、AI生成したビデオの検出に関する研究は限られている。
AI生成ビデオ検出のための既存のデータセットは、多様性、複雑性、リアリズムの限界を示す。
これらの問題に対処するために、本稿では、AI生成ビデオの検出と、Chameleonと呼ばれる多様なデータセットの構築に焦点を当てる。
我々は、複数の生成ツールと様々な実ビデオソースを通してビデオを生成する。
同時に、シーンスイッチやダイナミックな視点の変化など、ビデオの現実的な複雑さを保ち、顔中心の検出を超えて、人間のアクションや環境生成も含むように拡張します。
我々の研究は、AI生成されたデータセット構築と現実世界の法医学的ニーズのギャップを埋め、AI生成コンテンツの進化する脅威に対処するための貴重なベンチマークを提供する。
関連論文リスト
- Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos [106.5804660736763]
ビデオ情報検索は、ビデオコンテンツにアクセスするための基本的なアプローチである。
我々は,検索モデルがアドホックや画像検索タスクにおいて,AI生成コンテンツに好適であることを示す。
我々は、ビデオ検索に挑戦する文脈において、同様のバイアスが出現するかどうかを考察する。
論文 参考訳(メタデータ) (2025-02-11T07:43:47Z) - GenVidBench: A Challenging Benchmark for Detecting AI-Generated Video [35.05198100139731]
GenVidBenchは、AIが生成するビデオ検出データセットで、いくつかの重要な利点がある。
データセットには8つの最先端AIビデオジェネレータのビデオが含まれている。
複数の次元から分析され、その内容に基づいて様々な意味カテゴリーに分類される。
論文 参考訳(メタデータ) (2025-01-20T08:58:56Z) - Movie Gen: SWOT Analysis of Meta's Generative AI Foundation Model for Transforming Media Generation, Advertising, and Entertainment Industries [0.8463972278020965]
本稿では,最先端な生成AI基盤モデルであるMetas Movie GenのSWOT解析を包括的に行う。
我々は、高解像度のビデオ生成、正確な編集、シームレスなオーディオ統合など、その強みを探求する。
生成AIを取り巻く規制的・倫理的考察を,コンテンツ信頼性,文化的表現,責任ある利用といった問題に焦点をあてて検討する。
論文 参考訳(メタデータ) (2024-12-05T03:01:53Z) - What Matters in Detecting AI-Generated Videos like Sora? [51.05034165599385]
合成ビデオと現実世界のビデオのギャップは、まだ未発見のままだ。
本研究では,現在最先端のAIモデルであるStable Video Diffusionによって生成された実世界の映像を比較した。
我々のモデルは、訓練中にSoraのビデオに露出することなく、Soraが生成した映像を高精度に検出することができる。
論文 参考訳(メタデータ) (2024-06-27T23:03:58Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - DeMamba: AI-Generated Video Detection on Million-Scale GenVideo Benchmark [38.604684882464944]
我々は,AIが生成した最初のビデオ検出データセットであるGenVideoを紹介する。
大量のビデオがあり、その中にはAIが生成し、実際のビデオが100万本以上含まれている。
我々はデテール・マンバ(Detail Mamba)というプラグイン・アンド・プレイ・モジュールを導入し、AI生成ビデオを特定して検出器を強化する。
論文 参考訳(メタデータ) (2024-05-30T05:36:12Z) - DeepfakeArt Challenge: A Benchmark Dataset for Generative AI Art Forgery and Data Poisoning Detection [57.51313366337142]
悪意ある目的のために生成的AIを使用することについて懸念が高まっている。
生成AIを用いた視覚コンテンツ合成の領域では、画像偽造とデータ中毒が重要な関心事となっている。
DeepfakeArt Challenge(ディープフェイクアートチャレンジ)は、AIアートのジェネレーションとデータ中毒検出のための機械学習アルゴリズムの構築を支援するために設計された、大規模なチャレンジベンチマークデータセットである。
論文 参考訳(メタデータ) (2023-06-02T05:11:27Z) - Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis [60.13902294276283]
我々は826の動画(413のリアルと413の操作)からなるデータセットであるVideoShamを提示する。
既存のディープフェイクデータセットの多くは、2種類の顔操作にのみ焦点をあてている。
我々の分析によると、最先端の操作検出アルゴリズムはいくつかの特定の攻撃に対してのみ有効であり、VideoShamではうまくスケールしない。
論文 参考訳(メタデータ) (2022-07-26T17:39:04Z) - Video Generation from Text Employing Latent Path Construction for
Temporal Modeling [70.06508219998778]
ビデオ生成は、機械学習とコンピュータビジョンの分野における最も困難なタスクの1つである。
本稿では,映像生成の条件形式であるテキストから映像生成の問題に取り組む。
自然言語文からのビデオ生成が人工知能に重要な影響を与えると考えている。
論文 参考訳(メタデータ) (2021-07-29T06:28:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。