Hardware-Accelerated Event-Graph Neural Networks for Low-Latency Time-Series Classification on SoC FPGA
- URL: http://arxiv.org/abs/2503.06629v1
- Date: Sun, 09 Mar 2025 14:08:46 GMT
- Title: Hardware-Accelerated Event-Graph Neural Networks for Low-Latency Time-Series Classification on SoC FPGA
- Authors: Hiroshi Nakano, Krzysztof Blachut, Kamil Jeziorek, Piotr Wzorek, Manon Dampfhoffer, Thomas Mesquida, Hiroaki Nishi, Tomasz Kryjak, Thomas Dalgaty,
- Abstract summary: We present a hardware implementation of an event-graph neural network for time-series classification.<n>We leverage an artificial cochlea model to convert the input time-series signals into a sparse event-data format.<n>Our method achieves a floating-point accuracy of 92.7% on the SHD dataset for the base model, which is only 2.4% and 2% less than the state-of-the-art models.
- Score: 0.043533652831655174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the quantities of data recorded by embedded edge sensors grow, so too does the need for intelligent local processing. Such data often comes in the form of time-series signals, based on which real-time predictions can be made locally using an AI model. However, a hardware-software approach capable of making low-latency predictions with low power consumption is required. In this paper, we present a hardware implementation of an event-graph neural network for time-series classification. We leverage an artificial cochlea model to convert the input time-series signals into a sparse event-data format that allows the event-graph to drastically reduce the number of calculations relative to other AI methods. We implemented the design on a SoC FPGA and applied it to the real-time processing of the Spiking Heidelberg Digits (SHD) dataset to benchmark our approach against competitive solutions. Our method achieves a floating-point accuracy of 92.7% on the SHD dataset for the base model, which is only 2.4% and 2% less than the state-of-the-art models with over 10% and 67% fewer model parameters, respectively. It also outperforms FPGA-based spiking neural network implementations by 19.3% and 4.5%, achieving 92.3% accuracy for the quantised model while using fewer computational resources and reducing latency.
Related papers
- Compressing Recurrent Neural Networks for FPGA-accelerated Implementation in Fluorescence Lifetime Imaging [3.502427552446068]
Deep learning models enable real-time inference, but can be computationally demanding due to complex architectures and large matrix operations.
This makes DL models ill-suited for direct implementation on field-programmable gate array (FPGA)-based camera hardware.
In this work, we focus on compressing recurrent neural networks (RNNs), which are well-suited for FLI time-series data processing, to enable deployment on resource-constrained FPGA boards.
arXiv Detail & Related papers (2024-10-01T17:23:26Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Pushing the Limits of Asynchronous Graph-based Object Detection with
Event Cameras [62.70541164894224]
We introduce several architecture choices which allow us to scale the depth and complexity of such models while maintaining low computation.
Our method runs 3.7 times faster than a dense graph neural network, taking only 8.4 ms per forward pass.
arXiv Detail & Related papers (2022-11-22T15:14:20Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Network-wide Multi-step Traffic Volume Prediction using Graph
Convolutional Gated Recurrent Neural Network [16.56822335262946]
We propose a novel deep learning model, Graph Convolutional Gated Recurrent Neural Network (GCGRNN), to predict network-wide, multi-step traffic volume.
We have evaluated our model using two traffic datasets extracted from 150 sensors in Los Angeles, California, at the time resolutions one hour and 15 minutes, respectively.
arXiv Detail & Related papers (2021-11-22T16:41:13Z) - Rethinking Deconvolution for 2D Human Pose Estimation Light yet Accurate
Model for Real-time Edge Computing [0.0]
This system was found to be very accurate and achieved a 94.5% accuracy of SOTA HRNet 256x192.
Our model adopts an encoder-decoder architecture and is carefully downsized to improve its efficiency.
arXiv Detail & Related papers (2021-11-08T01:44:46Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
Mini-batch training of graph neural networks (GNNs) requires a lot of computation and data movement.
We argue in favor of performing mini-batch training with neighborhood sampling in a distributed multi-GPU environment.
We present a sequence of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler.
We also conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not materially compromised.
arXiv Detail & Related papers (2021-10-16T02:41:35Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Compressing deep neural networks on FPGAs to binary and ternary
precision with HLS4ML [13.325670094073383]
We present the implementation of binary and ternary neural networks in the hls4ml library.
We discuss the trade-off between model accuracy and resource consumption.
The binary and ternary implementation has similar performance to the higher precision implementation while using drastically fewer FPGA resources.
arXiv Detail & Related papers (2020-03-11T10:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.