論文の概要: Seeing Delta Parameters as JPEG Images: Data-Free Delta Compression with Discrete Cosine Transform
- arxiv url: http://arxiv.org/abs/2503.06676v1
- Date: Sun, 09 Mar 2025 16:03:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:22.971072
- Title: Seeing Delta Parameters as JPEG Images: Data-Free Delta Compression with Discrete Cosine Transform
- Title(参考訳): JPEG画像としてデルタパラメータを見る:離散コサイン変換によるデータ自由デルタ圧縮
- Authors: Chenyu Huang, Peng Ye, Xiaohui Wang, Shenghe Zheng, Biqing Qi, Lei Bai, Wanli Ouyang, Tao Chen,
- Abstract要約: 従来のJPEG画像圧縮にインスパイアされた最初のデータフリーデルタ圧縮手法であるDelta-DCTを導入し、離散コサイン変換(DCT)を利用する。
提案したデルタ-DCTはトレーニングやデータキャリブレーションを一切必要とせず、1ビット相当のデルタ圧縮比で元の微調整モデルに匹敵する性能を達成し、(1)最近7Bから13Bに異なるサイズのLSMを新たにリリースし、(2)RoBERTaやT5モデルを含む比較的小さな言語モデル、(3)視覚トランスフォーマーモデル、(4)マルチモーダルBEiT-3モデルなど様々なモデルで達成した。
- 参考スコア(独自算出の注目度): 51.29604910007176
- License:
- Abstract: With transformer-based models and the pretrain-finetune paradigm becoming mainstream, the high storage and deployment costs of individual finetuned models on multiple tasks pose critical challenges. Delta compression attempts to lower the costs by reducing the redundancy of delta parameters (i.e., the difference between the finetuned and pre-trained model weights). However, existing methods usually face problems including data accessibility and training requirements. To tackle this issue, we introduce Delta-DCT, the first data-free delta compression method inspired by classic JPEG image compression, leveraging the Discrete Cosine Transform (DCT). We first (a) group delta parameters within a layer into patches. Then we (b) assess the importance of each patch and allocate them with different quantization bit-widths. Afterwards, we (c) convert these patches to the DCT domain and conduct quantization to each patch based on the allocated bit-width. The proposed Delta-DCT does not require any training or data calibration, while achieving performance comparable to or even surpassing original finetuned models under 1-bit equivalent delta compression ratios on different kinds of models including: (1) recently-released LLMs of different sizes from 7B to 13B, (2) relatively smaller language models including RoBERTa and T5 models, (3) variants of vision transformer models, and (4) multi-modal BEiT-3 models.
- Abstract(参考訳): トランスフォーマーベースのモデルとプレトレイン-ファインチューンパラダイムが主流になるにつれ、複数のタスクにおける個々の微調整モデルの高ストレージとデプロイメントコストが重要な課題となっている。
デルタ圧縮は、デルタパラメータの冗長性(例えば、微調整されたモデル重量と事前訓練されたモデル重量の違い)を減らすことでコストを下げようとする。
しかし、既存の手法は通常、データアクセシビリティやトレーニング要件を含む問題に直面する。
そこで本研究では,従来のJPEG画像圧縮にインスパイアされた最初のデータフリーデルタ圧縮手法であるDelta-DCTを導入し,離散コサイン変換(DCT)を利用した。
はじめに
a) レイヤ内のデルタパラメータをパッチにグループ化する。
それでは
b) 各パッチの重要性を評価し、異なる量子化ビット幅で割り当てる。
その後
(c)これらのパッチをDCTドメインに変換し、割り当てられたビット幅に基づいて各パッチに量子化を行う。
提案したデルタ-DCTはトレーニングやデータキャリブレーションを一切必要とせず、1ビット相当のデルタ圧縮比で元の微調整モデルに匹敵する性能を達成し、(1)最近7Bから13Bに異なるサイズのLSMを新たにリリースし、(2)RoBERTaやT5モデルを含む比較的小さな言語モデル、(3)視覚トランスフォーマーモデル、(4)マルチモーダルBEiT-3モデルなど様々なモデルで達成した。
関連論文リスト
- DeltaDQ: Ultra-High Delta Compression for Fine-Tuned LLMs via Group-wise Dropout and Separate Quantization [17.501956455837707]
大規模言語モデルは、教師付き微調整により、様々な下流タスクにおいて例外的なパフォーマンスを達成する。
デルタ重量を圧縮する現在の方法は超高圧縮を達成するのに苦労している。
デルタ重みの超高圧縮を実現するために,分布駆動型デルタ圧縮フレームワークデルタDQを提案する。
論文 参考訳(メタデータ) (2024-10-11T09:44:16Z) - Dynamic Pre-training: Towards Efficient and Scalable All-in-One Image Restoration [100.54419875604721]
オールインワン画像復元は、各分解に対してタスク固有の非ジェネリックモデルを持たずに、統一されたモデルで異なるタイプの劣化に対処する。
我々は、オールインワン画像復元タスクのためのエンコーダデコーダ方式で設計されたネットワークの動的ファミリであるDyNetを提案する。
我々のDyNetは、よりバルク化と軽量化をシームレスに切り替えることができるので、効率的なモデルデプロイメントのための柔軟性を提供します。
論文 参考訳(メタデータ) (2024-04-02T17:58:49Z) - BitDelta: Your Fine-Tune May Only Be Worth One Bit [57.558376557639555]
大規模言語モデル(LLM)は通常、大規模なインターネットスケールデータセットの事前トレーニングと、下流タスクの微調整という2つのフェーズでトレーニングされる。
我々は,このデルタを1ビットまで量子化する簡単な手法BitDeltaを導入し,性能を損なうことなく実現した。
複数の1ビットデルタを伴う1つの高精度ベースモデルを使用することで、BitDeltaはGPUメモリの要求を劇的に10倍に削減する。
論文 参考訳(メタデータ) (2024-02-15T18:50:06Z) - OpenDelta: A Plug-and-play Library for Parameter-efficient Adaptation of
Pre-trained Models [81.7855202178564]
我々は,様々なデルタチューニング手法のプラグアンドプレイ実装を提供することで,制限を克服するオープンソースライブラリであるOpenDeltaを提案する。
我々の新しい技術は、バックボーン PTM のコードを変更する必要をなくし、OpenDelta を異なる新しい PTM と互換性を持たせる。
論文 参考訳(メタデータ) (2023-07-05T16:30:14Z) - Backdoor Attacks Against Deep Image Compression via Adaptive Frequency
Trigger [106.10954454667757]
本稿では,学習画像圧縮モデルに対する複数のトリガーを用いたバックドアアタックを提案する。
既存の圧縮システムや標準で広く使われている離散コサイン変換(DCT)に動機付けられ,周波数ベースのトリガーインジェクションモデルを提案する。
論文 参考訳(メタデータ) (2023-02-28T15:39:31Z) - Knowledge Distillation in Vision Transformers: A Critical Review [6.508088032296086]
ビジョントランスフォーマー(ViT)は、畳み込みニューラルネットワーク(CNN)よりも優れたパフォーマンス向上を実証した。
モデル圧縮は、最近、潜在的治療としてかなりの研究の注目を集めている。
本稿では、VTモデルの効率的な圧縮のためのKDに基づく様々なアプローチについて論じる。
論文 参考訳(メタデータ) (2023-02-04T06:30:57Z) - Online Model Compression for Federated Learning with Large Models [8.48327410170884]
Online Model Compression (OMC) は、モデルパラメータを圧縮形式で格納し、必要に応じて圧縮するフレームワークである。
OMCは、モデルパラメータのメモリ使用量と通信コストを最大59%削減し、完全精度のトレーニングと比較すると、同等の精度とトレーニング速度が得られる。
論文 参考訳(メタデータ) (2022-05-06T22:43:03Z) - Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for
Pre-trained Language Models [90.24999406296867]
標準の微調整とは対照的に、デルタチューニングはモデルパラメータのごく一部を微調整するだけであり、残りは触れないままである。
近年の研究では、パラメータ選択の異なる一連のデルタチューニング手法が、フルパラメータの微調整と同等の性能を達成できることが示されている。
論文 参考訳(メタデータ) (2022-03-14T07:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。