論文の概要: FEA-Bench: A Benchmark for Evaluating Repository-Level Code Generation for Feature Implementation
- arxiv url: http://arxiv.org/abs/2503.06680v1
- Date: Sun, 09 Mar 2025 16:11:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:10.733227
- Title: FEA-Bench: A Benchmark for Evaluating Repository-Level Code Generation for Feature Implementation
- Title(参考訳): FEA-Bench: 機能実装のためのリポジトリレベルのコード生成評価ベンチマーク
- Authors: Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang, Houfeng Wang, Scarlett Li,
- Abstract要約: FEA-Benchは、大規模な言語モデルがコードリポジトリ内でインクリメンタルな開発を行う能力を評価するために設計されたベンチマークである。
83のGitHubリポジトリからのプルリクエストを収集し、ルールベースとインテントベースのフィルタリングを使用して、新機能開発にフォーカスしたタスクインスタンスを構築します。
- 参考スコア(独自算出の注目度): 26.14778133391999
- License:
- Abstract: Implementing new features in repository-level codebases is a crucial application of code generation models. However, current benchmarks lack a dedicated evaluation framework for this capability. To fill this gap, we introduce FEA-Bench, a benchmark designed to assess the ability of large language models (LLMs) to perform incremental development within code repositories. We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development. Each task instance containing code changes is paired with relevant unit test files to ensure that the solution can be verified. The feature implementation requires LLMs to simultaneously possess code completion capabilities for new components and code editing abilities for other relevant parts in the code repository, providing a more comprehensive evaluation method of LLMs' automated software engineering capabilities. Experimental results show that LLMs perform significantly worse in the FEA-Bench, highlighting considerable challenges in such repository-level incremental code development.
- Abstract(参考訳): リポジトリレベルのコードベースで新機能を実装することは、コード生成モデルにとって重要なアプリケーションです。
しかし、現在のベンチマークでは、この機能に対する専用の評価フレームワークが欠如している。
このギャップを埋めるために、コードリポジトリ内でインクリメンタルな開発を行うための大規模言語モデル(LLM)の能力を評価するために設計されたベンチマークであるFEA-Benchを紹介します。
83のGitHubリポジトリからのプルリクエストを収集し、ルールベースとインテントベースのフィルタリングを使用して、新機能開発に特化したタスクインスタンスを構築します。
コードの変更を含む各タスクインスタンスは、関連するユニットテストファイルとペアになって、ソリューションの検証を可能にする。
機能の実装では、LLMが新しいコンポーネントのコード補完機能とコードリポジトリの他の関連部分のコード編集機能とを同時に保持する必要がある。
実験の結果, FEA-Bench では LLM が著しく低下しており,リポジトリレベルのインクリメンタルなコード開発において大きな課題が浮き彫りになっている。
関連論文リスト
- Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
本稿ではレポジトリレベルのコード生成を評価するために設計された新しいベンチマークであるRepoExecを紹介する。
実行可能性、包括的なテストケース生成による機能的正当性、ファイル間のコンテキストの正確な利用という3つの重要な側面に注目します。
論文 参考訳(メタデータ) (2024-06-17T10:45:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository [4.767858874370881]
実世界のリポジトリ内でクラスレベルのコードを生成する際に,LLMを厳格に評価するためのベンチマークであるRepoClassBenchを紹介する。
RepoClassBenchには、リポジトリの選択からJava、Python、C#にまたがる"Natural Language to Class Generation"タスクが含まれている。
Retrieve-Repotools-Reflect (RRR)は,レポジトリレベルのコンテキストを反復的にナビゲートし,推論する静的解析ツールを備えた新しいアプローチである。
論文 参考訳(メタデータ) (2024-04-22T03:52:54Z) - Repoformer: Selective Retrieval for Repository-Level Code Completion [30.706277772743615]
検索強化生成(RAG)の最近の進歩は、リポジトリレベルのコード補完の新たな時代が始まった。
本稿では,不要な場合の検索を回避するため,選択的なRAGフレームワークを提案する。
我々のフレームワークは、異なる世代モデル、レトリバー、プログラミング言語に対応できることを示します。
論文 参考訳(メタデータ) (2024-03-15T06:59:43Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - A Review of Repository Level Prompting for LLMs [0.0]
大規模言語モデル(LLM)は、HumanEvalベンチマークで94.6%の解決率を達成するなど、顕著な成功を収めている。
GitHub CopilotやTab Nineといったリポジトリレベルのインラインコード補完ツールの商用化が進んでいる。
本稿では,個々のコーディング問題からリポジトリスケールソリューションへの移行について述べる。
論文 参考訳(メタデータ) (2023-12-15T00:34:52Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoderはリポジトリレベルのコード補完プロセスを合理化するフレームワークである。
類似性ベースのレトリバーと、事前訓練されたコード言語モデルが組み込まれている。
バニラ検索で拡張されたコード補完アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2023-03-22T13:54:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。