論文の概要: Color Alignment in Diffusion
- arxiv url: http://arxiv.org/abs/2503.06746v1
- Date: Sun, 09 Mar 2025 20:02:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:48:31.221895
- Title: Color Alignment in Diffusion
- Title(参考訳): 拡散における色アライメント
- Authors: Ka Chun Shum, Binh-Son Hua, Duc Thanh Nguyen, Sai-Kit Yeung,
- Abstract要約: 拡散モデルは視覚的に魅力的な画像の合成において非常に有望である。
所定の色パターン内の拡散モデルにおける生成過程を限定する新しい色アライメントアルゴリズムを提案する。
その結果,色画素のコンディショニングと制御における最先端性能を,オンパー生成品質と多様性を維持しながら実証した。
- 参考スコア(独自算出の注目度): 29.15171578869268
- License:
- Abstract: Diffusion models have shown great promise in synthesizing visually appealing images. However, it remains challenging to condition the synthesis at a fine-grained level, for instance, synthesizing image pixels following some generic color pattern. Existing image synthesis methods often produce contents that fall outside the desired pixel conditions. To address this, we introduce a novel color alignment algorithm that confines the generative process in diffusion models within a given color pattern. Specifically, we project diffusion terms, either imagery samples or latent representations, into a conditional color space to align with the input color distribution. This strategy simplifies the prediction in diffusion models within a color manifold while still allowing plausible structures in generated contents, thus enabling the generation of diverse contents that comply with the target color pattern. Experimental results demonstrate our state-of-the-art performance in conditioning and controlling of color pixels, while maintaining on-par generation quality and diversity in comparison with regular diffusion models.
- Abstract(参考訳): 拡散モデルは視覚的に魅力的な画像の合成において非常に有望である。
しかし、例えば一般的な色パターンに従って画像ピクセルを合成するなど、微細なレベルで合成を条件付けることは依然として困難である。
既存の画像合成法は、しばしば所望の画素条件外にあるコンテンツを生成する。
そこで本研究では,特定の色パターン内の拡散モデルにおける生成過程を限定する,新しい色アライメントアルゴリズムを提案する。
具体的には、画像サンプルまたは潜在表現の拡散項を条件付き色空間に投影し、入力色分布と整合する。
この戦略は、色多様体内の拡散モデルにおける予測を単純化し、生成した内容の可塑性構造を引き続き許容し、ターゲット色パターンに適合する多様な内容の生成を可能にする。
実験結果から,カラーピクセルの条件付けと制御における最先端性能を示すとともに,正規拡散モデルと比較した場合のオンパー生成品質と多様性を両立させることができた。
関連論文リスト
- ColorFlow: Retrieval-Augmented Image Sequence Colorization [65.93834649502898]
産業用途における画像シーケンスのカラー化に適した3段階拡散に基づくフレームワークを提案する。
IDごとの微調整や明示的なID埋め込み抽出を必要とする既存の手法とは異なり、我々は新たにRetrieval Augmented Colorization Pipelineを提案する。
パイプラインには、カラーアイデンティティ抽出のためのブランチと、カラー化のためのブランチという、デュアルブランチ設計も備えています。
論文 参考訳(メタデータ) (2024-12-16T14:32:49Z) - Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling [49.41822427811098]
本稿では, 自己回帰性潜伏前駆体を組み込むことにより, サンプルの多様性を高める新しいアプローチであるKaleidoを紹介する。
Kaleidoは、オリジナルのキャプションをエンコードして潜伏変数を生成する自動回帰言語モデルを統合する。
そこで我々は,Kaleidoが生成した潜在変数のガイダンスに忠実に従属していることを示し,画像生成過程を効果的に制御し,指示する能力を示す。
論文 参考訳(メタデータ) (2024-05-31T17:41:11Z) - Multimodal Semantic-Aware Automatic Colorization with Diffusion Prior [15.188673173327658]
色を可塑性意味論で合成する前に拡散の異常な生成能力を利用する。
モデルが画像の内容を理解し、飽和色を提供するのに役立つため、マルチモーダルなハイレベルセマンティクスを前もって採用する。
輝度対応デコーダは細部を復元し、全体的な視覚的品質を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-04-25T15:28:22Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) は、事前訓練された安定拡散(SD)モデルを利用する多モードカラー化手法である。
ユーザのストロークをエンコードして、局所的な色操作を正確に行うための効果的な方法を提案する。
また、カラーオーバーフローと不正確な色付けの長年の問題に対処するために、自己注意に基づく新しいモジュールとコンテンツ誘導型変形可能なオートエンコーダを導入する。
論文 参考訳(メタデータ) (2024-02-16T17:51:13Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Image Harmonization with Diffusion Model [26.183879349798588]
前景と背景の間の一貫性のない照明条件は、しばしば非現実的な合成物をもたらす。
拡散モデルを用いた画像調和のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-17T23:23:52Z) - Video Colorization with Pre-trained Text-to-Image Diffusion Models [19.807766482434563]
ビデオカラー化のための事前訓練されたテキストから画像への潜時拡散モデルの適応であるColorDiffuserを提案する。
本稿では,時間的コヒーレンスを高め,フレーム間の色付けの鮮明さを維持するための2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-02T17:58:00Z) - Improved Diffusion-based Image Colorization via Piggybacked Models [19.807766482434563]
既存の強力なT2I拡散モデルに基づく色付けモデルを提案する。
拡散誘導器は、潜伏拡散モデルの事前訓練された重みを組み込むように設計されている。
次に、輝度認識VQVAEは、所定のグレースケール画像に画素完全アライメントされた色付き結果を生成する。
論文 参考訳(メタデータ) (2023-04-21T16:23:24Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。