SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation
- URL: http://arxiv.org/abs/2503.06764v4
- Date: Wed, 04 Jun 2025 04:13:07 GMT
- Title: SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation
- Authors: Zisheng Chen, Chunwei Wang, Xiuwei Chen, Hongbin Xu, Runhui Huang, Jun Zhou, Jianhua Han, Hang Xu, Xiaodan Liang,
- Abstract summary: We introduce SemHiTok, a unified image tokenizer via Semantic-Guided Hierarchical codebook.<n>We show that SemHiTok achieves SOTA performance in image reconstruction and multimodal understanding under LLaVA-v1.5 setting.<n>We also develop a unified MLLM with SemHiTok, which exhibits superior performance across multimodal understanding and generation tasks.
- Score: 71.68085485928007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce SemHiTok, a unified image Tokenizer via Semantic-Guided Hierarchical codebook that provides consistent discrete representations for multimodal understanding and generation. Recently, unified image tokenizers have sparked exploration within research community, which is designed to capture high-level semantic features for understanding and retaining low-level pixel features for generation. Previous works attempt to train a unified image tokenizer by combining loss for semantic distillation and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through a novel semantic-guided hierarchical codebook, which builds pixel sub-codebooks on a pretrained semantic codebook. This design decouples semantic and pixel both in terms of structure and training strategy, enabling the tokenizer to capture pixel features while retaining its ability to comprehend high-level semantic information. Our experiments demonstrate that SemHiTok achieves SOTA performance in image reconstruction and multimodal understanding under LLaVA-v1.5 setting. Further, we develop a unified MLLM with SemHiTok, which exhibits superior performance across multimodal understanding and generation tasks. For understanding, SemHiTok achieves impressive performance on most benchmarks. For generation, our model achieves SOTA performance on MJHQ30K in unified MLLMs.
Related papers
- ILLUME+: Illuminating Unified MLLM with Dual Visual Tokenization and Diffusion Refinement [68.05833403672274]
Existing unified models have struggled to handle the three fundamental capabilities in a unified model: understanding, generation, and editing.<n>ILLUME+ introduces a unified dual visual tokenizer, DualViTok, which preserves fine-grained textures and text-aligned semantics.<n>We also employ a diffusion model as the image detokenizer for enhanced generation quality and efficient super-resolution.
arXiv Detail & Related papers (2025-04-02T17:45:00Z) - Harmonizing Visual Representations for Unified Multimodal Understanding and Generation [53.01486796503091]
We present emphHarmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder.
Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks.
arXiv Detail & Related papers (2025-03-27T20:50:38Z) - DualToken: Towards Unifying Visual Understanding and Generation with Dual Visual Vocabularies [25.77487827338777]
A vision tokenizer trained for reconstruction excels at capturing low-level perceptual details.
A vision encoder trained via contrastive learning aligns well with language but struggles to decode back into the pixel space for generation tasks.
We propose DualToken, a method that unifies representations for both understanding and generation within a single tokenizer.
arXiv Detail & Related papers (2025-03-18T14:56:46Z) - Unified Autoregressive Visual Generation and Understanding with Continuous Tokens [52.21981295470491]
We present UniFluid, a unified autoregressive framework for joint visual generation and understanding.
Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image.
We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other.
arXiv Detail & Related papers (2025-03-17T17:58:30Z) - QLIP: Text-Aligned Visual Tokenization Unifies Auto-Regressive Multimodal Understanding and Generation [101.28446308930367]
Quantized Language-Image Pretraining (QLIP) combines state-of-the-art reconstruction quality with state-of-the-art zero-shot image understanding.<n>QLIP trains a binary-spherical-quantization-based autoencoder with reconstruction and language-image alignment objectives.<n>We demonstrate that QLIP enables a unified mixed-modality auto-regressive model for understanding and generation.
arXiv Detail & Related papers (2025-02-07T18:59:57Z) - Incorporating Feature Pyramid Tokenization and Open Vocabulary Semantic Segmentation [8.659766913542938]
We study a united perceptual and semantic token compression for all granular understanding.<n>We propose Feature Pyramid Tokenization (PAT) to cluster and represent multi-resolution feature by learnable codebooks.<n>Our experiments show that PAT enhances the semantic intuition of VLM feature pyramid.
arXiv Detail & Related papers (2024-12-18T18:43:21Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.<n>We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.<n>Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - Factorized Visual Tokenization and Generation [37.56136469262736]
We introduce Factorized Quantization (FQ), a novel approach that revitalizes VQ-based tokenizers by decomposing a large codebook into multiple independent sub-codebooks.<n>This factorization reduces the lookup complexity of large codebooks, enabling more efficient and scalable visual tokenization.<n> Experiments show that the proposed FQGAN model substantially improves the reconstruction quality of visual tokenizers, achieving state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T18:59:53Z) - SGC-VQGAN: Towards Complex Scene Representation via Semantic Guided Clustering Codebook [9.993066868670283]
We introduce SGC-VQGAN through Semantic Online Clustering method to enhance token semantics through Consistent Semantic Learning.
Our approach constructs a temporospatially consistent semantic codebook, addressing issues of codebook collapse and imbalanced token semantics.
arXiv Detail & Related papers (2024-09-09T23:12:43Z) - Comprehensive Generative Replay for Task-Incremental Segmentation with Concurrent Appearance and Semantic Forgetting [49.87694319431288]
Generalist segmentation models are increasingly favored for diverse tasks involving various objects from different image sources.
We propose a Comprehensive Generative (CGR) framework that restores appearance and semantic knowledge by synthesizing image-mask pairs.
Experiments on incremental tasks (cardiac, fundus and prostate segmentation) show its clear advantage for alleviating concurrent appearance and semantic forgetting.
arXiv Detail & Related papers (2024-06-28T10:05:58Z) - Not All Image Regions Matter: Masked Vector Quantization for
Autoregressive Image Generation [78.13793505707952]
Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook.
We propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) Stack model from modeling redundancy.
arXiv Detail & Related papers (2023-05-23T02:15:53Z) - High-Quality Pluralistic Image Completion via Code Shared VQGAN [51.7805154545948]
We present a novel framework for pluralistic image completion that can achieve both high quality and diversity at much faster inference speed.
Our framework is able to learn semantically-rich discrete codes efficiently and robustly, resulting in much better image reconstruction quality.
arXiv Detail & Related papers (2022-04-05T01:47:35Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
We show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications.
The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks.
arXiv Detail & Related papers (2020-07-20T18:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.