Towards Generalization of Tactile Image Generation: Reference-Free Evaluation in a Leakage-Free Setting
- URL: http://arxiv.org/abs/2503.06860v1
- Date: Mon, 10 Mar 2025 02:37:22 GMT
- Title: Towards Generalization of Tactile Image Generation: Reference-Free Evaluation in a Leakage-Free Setting
- Authors: Cagri Gungor, Derek Eppinger, Adriana Kovashka,
- Abstract summary: Tactile sensing is critical for human perception and underpins applications in computer vision, robotics, and multimodal learning.<n>Because tactile data is often scarce and costly to acquire, generating synthetic tactile images provides a scalable solution to augment real-world measurements.<n>We demonstrate that overlapping training and test samples in commonly used datasets inflate performance metrics, obscuring the true generalizability of tactile models.
- Score: 25.355424080824996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tactile sensing, which relies on direct physical contact, is critical for human perception and underpins applications in computer vision, robotics, and multimodal learning. Because tactile data is often scarce and costly to acquire, generating synthetic tactile images provides a scalable solution to augment real-world measurements. However, ensuring robust generalization in synthesizing tactile images-capturing subtle, material-specific contact features-remains challenging. We demonstrate that overlapping training and test samples in commonly used datasets inflate performance metrics, obscuring the true generalizability of tactile models. To address this, we propose a leakage-free evaluation protocol coupled with novel, reference-free metrics-TMMD, I-TMMD, CI-TMMD, and D-TMMD-tailored for tactile generation. Moreover, we propose a vision-to-touch generation method that leverages text as an intermediate modality by incorporating concise, material-specific descriptions during training to better capture essential tactile features. Experiments on two popular visuo-tactile datasets, Touch and Go and HCT, show that our approach achieves superior performance and enhanced generalization in a leakage-free setting.
Related papers
- Temporal Binding Foundation Model for Material Property Recognition via Tactile Sequence Perception [2.3724852180691025]
This letter presents a novel approach leveraging a temporal binding foundation model for tactile sequence understanding.<n>The proposed system captures the sequential nature of tactile interactions, similar to human fingertip perception.
arXiv Detail & Related papers (2025-01-24T21:47:38Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Controllable Visual-Tactile Synthesis [28.03469909285511]
We develop a conditional generative model that synthesizes both visual and tactile outputs from a single sketch.
We then introduce a pipeline to render high-quality visual and tactile outputs on an electroadhesion-based haptic device.
arXiv Detail & Related papers (2023-05-04T17:59:51Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Learning to Synthesize Volumetric Meshes from Vision-based Tactile
Imprints [26.118805500471066]
Vision-based tactile sensors typically utilize a deformable elastomer and a camera mounted above to provide high-resolution image observations of contacts.
This paper focuses on learning to synthesize the mesh of the elastomer based on the image imprints acquired from vision-based tactile sensors.
A graph neural network (GNN) is introduced to learn the image-to-mesh mappings with supervised learning.
arXiv Detail & Related papers (2022-03-29T00:24:10Z) - Learning to Detect Slip with Barometric Tactile Sensors and a Temporal
Convolutional Neural Network [7.346580429118843]
We present a learning-based method to detect slip using barometric tactile sensors.
We train a temporal convolution neural network to detect slip, achieving high detection accuracies.
We argue that barometric tactile sensing technology, combined with data-driven learning, is suitable for many manipulation tasks such as slip compensation.
arXiv Detail & Related papers (2022-02-19T08:21:56Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - Active 3D Shape Reconstruction from Vision and Touch [66.08432412497443]
Humans build 3D understandings of the world through active object exploration, using jointly their senses of vision and touch.
In 3D shape reconstruction, most recent progress has relied on static datasets of limited sensory data such as RGB images, depth maps or haptic readings.
We introduce a system composed of: 1) a haptic simulator leveraging high spatial resolution vision-based tactile sensors for active touching of 3D objects; 2) a mesh-based 3D shape reconstruction model that relies on tactile or visuotactile priors to guide the shape exploration; and 3) a set of data-driven solutions with either tactile or visuo
arXiv Detail & Related papers (2021-07-20T15:56:52Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
Existing tactile sensors are either flat, have small sensitive fields or only provide low-resolution signals.
We introduce OmniTact, a multi-directional high-resolution tactile sensor.
We evaluate the capabilities of OmniTact on a challenging robotic control task.
arXiv Detail & Related papers (2020-03-16T01:31:29Z) - Learning the sense of touch in simulation: a sim-to-real strategy for
vision-based tactile sensing [1.9981375888949469]
This paper focuses on a vision-based tactile sensor, which aims to reconstruct the distribution of the three-dimensional contact forces applied on its soft surface.
A strategy is proposed to train a tailored deep neural network entirely from the simulation data.
The resulting learning architecture is directly transferable across multiple tactile sensors without further training and yields accurate predictions on real data.
arXiv Detail & Related papers (2020-03-05T14:17:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.