Learning the sense of touch in simulation: a sim-to-real strategy for
vision-based tactile sensing
- URL: http://arxiv.org/abs/2003.02640v1
- Date: Thu, 5 Mar 2020 14:17:45 GMT
- Title: Learning the sense of touch in simulation: a sim-to-real strategy for
vision-based tactile sensing
- Authors: Carmelo Sferrazza, Thomas Bi and Raffaello D'Andrea
- Abstract summary: This paper focuses on a vision-based tactile sensor, which aims to reconstruct the distribution of the three-dimensional contact forces applied on its soft surface.
A strategy is proposed to train a tailored deep neural network entirely from the simulation data.
The resulting learning architecture is directly transferable across multiple tactile sensors without further training and yields accurate predictions on real data.
- Score: 1.9981375888949469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven approaches to tactile sensing aim to overcome the complexity of
accurately modeling contact with soft materials. However, their widespread
adoption is impaired by concerns about data efficiency and the capability to
generalize when applied to various tasks. This paper focuses on both these
aspects with regard to a vision-based tactile sensor, which aims to reconstruct
the distribution of the three-dimensional contact forces applied on its soft
surface. Accurate models for the soft materials and the camera projection,
derived via state-of-the-art techniques in the respective domains, are employed
to generate a dataset in simulation. A strategy is proposed to train a tailored
deep neural network entirely from the simulation data. The resulting learning
architecture is directly transferable across multiple tactile sensors without
further training and yields accurate predictions on real data, while showing
promising generalization capabilities to unseen contact conditions.
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Visual-Tactile Sensing for In-Hand Object Reconstruction [38.42487660352112]
We propose a visual-tactile in-hand object reconstruction framework textbfVTacO, and extend it to textbfVTacOH for hand-object reconstruction.
A simulation environment, VT-Sim, supports generating hand-object interaction for both rigid and deformable objects.
arXiv Detail & Related papers (2023-03-25T15:16:31Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Learning to Synthesize Volumetric Meshes from Vision-based Tactile
Imprints [26.118805500471066]
Vision-based tactile sensors typically utilize a deformable elastomer and a camera mounted above to provide high-resolution image observations of contacts.
This paper focuses on learning to synthesize the mesh of the elastomer based on the image imprints acquired from vision-based tactile sensors.
A graph neural network (GNN) is introduced to learn the image-to-mesh mappings with supervised learning.
arXiv Detail & Related papers (2022-03-29T00:24:10Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - Sim-to-real for high-resolution optical tactile sensing: From images to
3D contact force distributions [5.939410304994348]
This article proposes a strategy to generate tactile images in simulation for a vision-based tactile sensor based on an internal camera.
The deformation of the material is simulated in a finite element environment under a diverse set of contact conditions, and spherical particles are projected to a simulated image.
Features extracted from the images are mapped to the 3D contact force distribution, with the ground truth also obtained via finite-element simulations.
arXiv Detail & Related papers (2020-12-21T12:43:33Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.