Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
- URL: http://arxiv.org/abs/2503.06866v1
- Date: Mon, 10 Mar 2025 02:43:54 GMT
- Title: Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
- Authors: Wanjing Huang, Tongjie Pan, Yalan Ye,
- Abstract summary: We propose a risk-aware task planning framework that combines large language models with structured safety modeling.<n>Our approach constructs a dynamic-semantic safety graph, capturing spatial and contextual risk factors.<n>Unlike existing methods that rely on predefined safety constraints, our framework introduces a context-aware risk perception module.
- Score: 4.424170214926035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have expanded their role in robotic task planning. However, while LLMs have been explored for generating feasible task sequences, their ability to ensure safe task execution remains underdeveloped. Existing methods struggle with structured risk perception, making them inadequate for safety-critical applications where low-latency hazard adaptation is required. To address this limitation, we propose a Graphormer-enhanced risk-aware task planning framework that combines LLM-based decision-making with structured safety modeling. Our approach constructs a dynamic spatio-semantic safety graph, capturing spatial and contextual risk factors to enable online hazard detection and adaptive task refinement. Unlike existing methods that rely on predefined safety constraints, our framework introduces a context-aware risk perception module that continuously refines safety predictions based on real-time task execution. This enables a more flexible and scalable approach to robotic planning, allowing for adaptive safety compliance beyond static rules. To validate our framework, we conduct experiments in the AI2-THOR environment. The experiments results validates improvements in risk detection accuracy, rising safety notice, and task adaptability of our framework in continuous environments compared to static rule-based and LLM-only baselines. Our project is available at https://github.com/hwj20/GGTP
Related papers
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.
Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.
These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Safety Aware Task Planning via Large Language Models in Robotics [22.72668275829238]
This paper introduces SAFER (Safety-Aware Framework for Execution in Robotics), a multi-LLM framework designed to embed safety awareness into robotic task planning.
Our framework integrates safety feedback at multiple stages of execution, enabling real-time risk assessment, proactive error correction, and transparent safety evaluation.
arXiv Detail & Related papers (2025-03-19T21:41:10Z) - Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis [0.6749750044497732]
This paper introduces a safety assurance framework for Large Language Models (LLMs)-controlled robots based on data-driven reachability analysis.<n>Our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models.
arXiv Detail & Related papers (2025-03-05T21:23:15Z) - AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
We propose AGrail, a lifelong guardrail to enhance agent safety.<n>AGrail features adaptive safety check generation, effective safety check optimization, and tool compatibility and flexibility.
arXiv Detail & Related papers (2025-02-17T05:12:33Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity [0.659529078336196]
Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions and strategically plan high-level actions.<n>LLMs hallucination may result in robots confidently executing plans that are misaligned with user goals or even unsafe in critical scenarios.<n>We propose introspective planning, a systematic approach that align LLM's uncertainty with the inherent ambiguity of the task.
arXiv Detail & Related papers (2024-02-09T16:40:59Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance [73.3242641337305]
Recent work learns risk measures which measure the probability of violating constraints, which can then be used to enable safety.
We cast safe exploration as an offline meta-RL problem, where the objective is to leverage examples of safe and unsafe behavior across a range of environments.
We then propose MEta-learning for Safe Adaptation (MESA), an approach for meta-learning Simulation a risk measure for safe RL.
arXiv Detail & Related papers (2021-12-07T08:57:35Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications.
In this paper, we propose a learning-based control framework consisting of several aspects.
We show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability.
arXiv Detail & Related papers (2021-09-07T00:51:12Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.