論文の概要: DirectTriGS: Triplane-based Gaussian Splatting Field Representation for 3D Generation
- arxiv url: http://arxiv.org/abs/2503.06900v1
- Date: Mon, 10 Mar 2025 04:05:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 20:09:44.696764
- Title: DirectTriGS: Triplane-based Gaussian Splatting Field Representation for 3D Generation
- Title(参考訳): DirectTriGS:3次元生成のための三面体型ガウス散乱場表現
- Authors: Xiaoliang Ju, Hongsheng Li,
- Abstract要約: ガウススプラッティング(GS)を用いた3次元オブジェクト生成のための新しいフレームワークであるDirectTriGSを提案する。
提案した生成フレームワークは,テキスト・ツー・3Dタスクにおいて高品質な3Dオブジェクト形状とレンダリング結果を生成することができる。
- 参考スコア(独自算出の注目度): 37.09199962653554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DirectTriGS, a novel framework designed for 3D object generation with Gaussian Splatting (GS). GS-based rendering for 3D content has gained considerable attention recently. However, there has been limited exploration in directly generating 3D Gaussians compared to traditional generative modeling approaches. The main challenge lies in the complex data structure of GS represented by discrete point clouds with multiple channels. To overcome this challenge, we propose employing the triplane representation, which allows us to represent Gaussian Splatting as an image-like continuous field. This representation effectively encodes both the geometry and texture information, enabling smooth transformation back to Gaussian point clouds and rendering into images by a TriRenderer, with only 2D supervisions. The proposed TriRenderer is fully differentiable, so that the rendering loss can supervise both texture and geometry encoding. Furthermore, the triplane representation can be compressed using a Variational Autoencoder (VAE), which can subsequently be utilized in latent diffusion to generate 3D objects. The experiments demonstrate that the proposed generation framework can produce high-quality 3D object geometry and rendering results in the text-to-3D task.
- Abstract(参考訳): ガウススプラッティング(GS)を用いた3次元オブジェクト生成のための新しいフレームワークであるDirectTriGSを提案する。
GSベースの3Dコンテンツのレンダリングは、最近大きな注目を集めている。
しかし、従来の生成的モデリング手法と比較して、3Dガウスを直接生成する方法は限られている。
主な課題は、複数のチャネルを持つ離散点雲で表されるGSの複雑なデータ構造にある。
この課題を克服するために、画像のような連続体としてガウススプラッティングを表現できる三面体表現を用いることを提案する。
この表現は、幾何情報とテクスチャ情報を効果的にエンコードし、ガウス点雲へのスムーズな変換を可能にし、トリレンダーによる画像へのレンダリングを可能にする。
提案したTriRendererは完全に微分可能であり、描画損失はテクスチャと幾何学的エンコーディングの両方を監督できる。
さらに、三面体表現は変分オートエンコーダ(VAE)を用いて圧縮することができ、3Dオブジェクトを生成するために遅延拡散で利用することができる。
提案手法は,テキスト・ツー・3Dタスクにおいて高品質な3次元オブジェクト形状とレンダリング結果が得られることを示す。
関連論文リスト
- EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting [9.94641948288285]
EG-Gaussianは3次元シーン再構成にエピポーラ幾何学とグラフネットワークを利用する。
提案手法は3DGS法と比較して再構成精度を著しく向上させる。
論文 参考訳(メタデータ) (2025-04-18T08:10:39Z) - Hyper3D: Efficient 3D Representation via Hybrid Triplane and Octree Feature for Enhanced 3D Shape Variational Auto-Encoders [43.61384205458698]
3Dコンテンツ生成パイプラインは、しばしば変分オートエンコーダ(VAE)を利用して、形状をコンパクトな潜在表現にエンコードする。
我々は,ハイブリッド3次元平面とオクツリーを融合した効率的な3次元表現により,VAE再構成を向上するHyper3Dを紹介する。
実験の結果,Hyper3Dは3次元形状を高忠実度で細部まで再現することで従来の表現よりも優れていた。
論文 参考訳(メタデータ) (2025-03-13T14:26:43Z) - Dragen3D: Multiview Geometry Consistent 3D Gaussian Generation with Drag-Based Control [2.5031284037888395]
Dragen3Dは、幾何学的に一貫した制御可能な3D生成を実現する新しいアプローチである。
Anchor-Gaussian Variational Autoencoder (Anchor-GS VAE)を導入し、点雲と1つのイメージをアンカー潜水器にエンコードし、これらの潜水器を3DGSにデコードする。
我々の知る限りでは、幾何学的に制御可能な3Dガウス生成と編集を初めて達成した人物である。
論文 参考訳(メタデータ) (2025-02-23T07:19:03Z) - F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting [35.625593119642424]
本稿では,モノケプラーデータセットから3次元認識を一般化する問題に取り組む。
画素整列型ガウススプラッティングに基づく新しいフィードフォワードパイプラインを提案する。
また、学習した3D表現において、クロスビューの一貫性を強制するために、自己教師付きサイクル一貫性制約を導入する。
論文 参考訳(メタデータ) (2025-01-12T04:44:44Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - GaussianAnything: Interactive Point Cloud Flow Matching For 3D Object Generation [75.39457097832113]
本稿では,インタラクティブなポイントクラウド構造ラテント空間を備えたスケーラブルで高品質な3D生成を実現する,新しい3D生成フレームワークを提案する。
本フレームワークでは,複数ビューのRGB-D(epth)-N(ormal)レンダリングを入力として使用する変分オートエンコーダを,3次元形状情報を保存する独自のラテント空間設計を用いて構成する。
提案手法であるGaussianAnythingは,複数モード条件付き3D生成をサポートし,ポイントクラウド,キャプション,単一画像入力を可能にする。
論文 参考訳(メタデータ) (2024-11-12T18:59:32Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。