FinTSBridge: A New Evaluation Suite for Real-world Financial Prediction with Advanced Time Series Models
- URL: http://arxiv.org/abs/2503.06928v1
- Date: Mon, 10 Mar 2025 05:19:13 GMT
- Title: FinTSBridge: A New Evaluation Suite for Real-world Financial Prediction with Advanced Time Series Models
- Authors: Yanlong Wang, Jian Xu, Tiantian Gao, Hongkang Zhang, Shao-Lun Huang, Danny Dongning Sun, Xiao-Ping Zhang,
- Abstract summary: There is still a need for a bridge to connect cutting-edge time series forecasting models with financial asset pricing.<n>We constructed three datasets from the financial domain and selected over ten time series forecasting models from recent studies.<n>We developed new metrics, msIC and msIR, in addition to MSE and MAE, to showcase the time series correlation captured by the models.
- Score: 17.939409001141602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the growing attention to time series forecasting in recent years, many studies have proposed various solutions to address the challenges encountered in time series prediction, aiming to improve forecasting performance. However, effectively applying these time series forecasting models to the field of financial asset pricing remains a challenging issue. There is still a need for a bridge to connect cutting-edge time series forecasting models with financial asset pricing. To bridge this gap, we have undertaken the following efforts: 1) We constructed three datasets from the financial domain; 2) We selected over ten time series forecasting models from recent studies and validated their performance in financial time series; 3) We developed new metrics, msIC and msIR, in addition to MSE and MAE, to showcase the time series correlation captured by the models; 4) We designed financial-specific tasks for these three datasets and assessed the practical performance and application potential of these forecasting models in important financial problems. We hope the developed new evaluation suite, FinTSBridge, can provide valuable insights into the effectiveness and robustness of advanced forecasting models in finanical domains.
Related papers
- FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
Financial time series (FinTS) record the behavior of human-brain-augmented decision-making.<n>FinTSB is a comprehensive and practical benchmark for financial time series forecasting.
arXiv Detail & Related papers (2025-02-26T05:19:16Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Large Language Models for Financial Aid in Financial Time-series Forecasting [0.4218593777811082]
Time series forecasting in financial aid is difficult due to limited historical datasets and high dimensional financial information.
We use state-of-the-art time series models including pre-trained LLMs (GPT-2 as the backbone), transformers, and linear models to demonstrate their ability to outperform traditional approaches.
arXiv Detail & Related papers (2024-10-24T12:41:47Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
We focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions.
We introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models.
arXiv Detail & Related papers (2024-06-12T17:39:16Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
Deep learning models are replacing traditional statistical and machine learning models for price forecasting tasks.
This review delves deeply into deep learning-based forecasting models, presenting information on model architectures, practical applications, and their respective advantages and disadvantages.
The present contribution also includes potential directions for future research, such as examining the effectiveness of deep learning models with complex structures for price forecasting.
arXiv Detail & Related papers (2023-04-21T03:46:09Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - MegazordNet: combining statistical and machine learning standpoints for
time series forecasting [0.4061135251278187]
MegazordNet is a framework that explores statistical features within a financial series combined with a structured deep learning model for time series forecasting.
We evaluate our approach predicting the closing price of stocks in the S&P 500 using different metrics, and we were able to beat single statistical and machine learning methods.
arXiv Detail & Related papers (2021-06-23T15:06:54Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Price graphs: Utilizing the structural information of financial time
series for stock prediction [4.4707451544733905]
We propose a novel framework to address both issues regarding stock prediction.
In terms of transforming time series into complex networks, we convert market price series into graphs.
We take graph embeddings to represent the associations among temporal points as the prediction model inputs.
arXiv Detail & Related papers (2021-06-04T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.