Assessing Uncertainty in Stock Returns: A Gaussian Mixture Distribution-Based Method
- URL: http://arxiv.org/abs/2503.06929v1
- Date: Mon, 10 Mar 2025 05:20:56 GMT
- Title: Assessing Uncertainty in Stock Returns: A Gaussian Mixture Distribution-Based Method
- Authors: Yanlong Wang, Jian Xu, Shao-Lun Huang, Danny Dongning Sun, Xiao-Ping Zhang,
- Abstract summary: We introduce a novel deep learning model to capture the complex, time-varying nature of asset return distributions in the Chinese stock market.<n>Our approach effectively characterizes short-term fluctuations and non-traditional features of stock returns, such as skewness and heavy tails.<n>It provides more accurate volatility forecasts and offers unique risk insights for different assets, thereby deepening the understanding of return uncertainty.
- Score: 19.332951287688108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study seeks to advance the understanding and prediction of stock market return uncertainty through the application of advanced deep learning techniques. We introduce a novel deep learning model that utilizes a Gaussian mixture distribution to capture the complex, time-varying nature of asset return distributions in the Chinese stock market. By incorporating the Gaussian mixture distribution, our approach effectively characterizes short-term fluctuations and non-traditional features of stock returns, such as skewness and heavy tails, that are often overlooked by traditional models. Compared to GARCH models and their variants, our method demonstrates superior performance in volatility estimation, particularly during periods of heightened market volatility. It provides more accurate volatility forecasts and offers unique risk insights for different assets, thereby deepening the understanding of return uncertainty. Additionally, we propose a novel use of Code embedding which utilizes a bag-of-words approach to train hidden representations of stock codes and transforms the uncertainty attributes of stocks into high-dimensional vectors. These vectors are subsequently reduced to two dimensions, allowing the observation of similarity among different stocks. This visualization facilitates the identification of asset clusters with similar risk profiles, offering valuable insights for portfolio management and risk mitigation. Since we predict the uncertainty of returns by estimating their latent distribution, it is challenging to evaluate the return distribution when the true distribution is unobservable. However, we can measure it through the CRPS to assess how well the predicted distribution matches the true returns, and through MSE and QLIKE metrics to evaluate the error between the volatility level of the predicted distribution and proxy measures of true volatility.
Related papers
- The Uncertainty of Machine Learning Predictions in Asset Pricing [2.0249250133493195]
We show that neural network forecasts of expected returns share the same distribution as classic nonparametric methods.<n>We incorporate these forecast confidence intervals into an uncertainty-averse investment framework.
arXiv Detail & Related papers (2025-03-01T16:32:00Z) - Mean-Variance Portfolio Selection in Long-Term Investments with Unknown Distribution: Online Estimation, Risk Aversion under Ambiguity, and Universality of Algorithms [0.0]
This paper adopts a perspective where data gradually and continuously reveal over time.
The performance of these proposed strategies is guaranteed under specific markets.
In stationary and ergodic markets, the so-called Bayesian strategy utilizing true conditional distributions, based on observed past market information during investment, almost surely does not perform better than the proposed strategies in terms of empirical utility, Sharpe ratio, or growth rate, which, in contrast, do not rely on conditional distributions.
arXiv Detail & Related papers (2024-06-19T12:11:42Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making.
We propose RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively.
RAGIC's generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality.
arXiv Detail & Related papers (2024-02-16T15:34:07Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Distributional Reinforcement Learning with Dual Expectile-Quantile Regression [51.87411935256015]
quantile regression approach to distributional RL provides flexible and effective way of learning arbitrary return distributions.
We show that distributional guarantees vanish, and we empirically observe that the estimated distribution rapidly collapses to its mean estimation.
Motivated by the efficiency of $L$-based learning, we propose to jointly learn expectiles and quantiles of the return distribution in a way that allows efficient learning while keeping an estimate of the full distribution of returns.
arXiv Detail & Related papers (2023-05-26T12:30:05Z) - Empirical Asset Pricing via Ensemble Gaussian Process Regression [4.281723404774889]
Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference.
We find that our method dominates existing machine learning models statistically and economically.
It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
arXiv Detail & Related papers (2022-12-02T09:37:29Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.